Example #1
0
confessions = db.parses.find({
    "analyzed": { "$ne": ANALYZER_VERSION }
}, limit=500)
threshold = 0.2
for confession in confessions:
    for tree_id, raw_tree in enumerate(confession["trees"]):
        if raw_tree == "None": continue

        # get sentence categories
        tree = Tree.fromstring(raw_tree)
        categories = [(category, prob) for (category, prob) in classifier.classify(tree).items() if prob > threshold]

        # add to queue to get sentence sentiment
        predictor.add_tree({
            "raw_tree": raw_tree,
            "tree_id": tree_id,
            "categories": categories,
            "confession_id": confession["_id"]
        })

# run sentiment predictor
predictor.run()

# aggregate by confession
confession_results = {}
for datum in predictor.trees:
    if datum["confession_id"] not in confession_results: confession_results[datum["confession_id"]] = []
    confession_results[datum["confession_id"]].append(datum)

for confession_id, sentences in confession_results.items():
    categories = {}
    probabilities = {}
Example #2
0
        s = datum["sentiment"]
        if datum["gold_sentiment"] < 0:
            if s < 0: accurate += 1
            else: inaccurate += 1
        else:
            if s > 0: accurate += 1
            else: inaccurate += 1
    return accurate*1.0/(accurate+inaccurate)

# predict sentence sentiments
predictor = SentimentPredictor()
for (parse_id, tree_id), sentiments in sentences.items():
    confession = db.parses.find_one({ "_id": ObjectId(parse_id) })
    tree = confession["trees"][tree_id]
    sentiment = sum(sentiments)*1.0/len(sentiments)
    predictor.add_tree({
        "raw_tree": tree,
        "gold_sentiment": sentiment
    })
predictor.run()
print score_accuracy(predictor.trees)

# predict confession sentiments
predictor = SentimentPredictor()
for parse_id, sentiments in confessions.items():
    confession = db.parses.find_one({ "_id": ObjectId(parse_id) })
    confession["gold_sentiment"] = sum(sentiments)*1.0/len(sentiments)
    predictor.add_confession(confession)
predictor.run()
print score_accuracy(predictor.confessions)