def save(self, project_id, raw=False, assume_normalized=False, cache_key=None): """ We re-insert events with duplicate IDs into Snuba, which is responsible for deduplicating events. Since deduplication in Snuba is on the primary key (based on event ID, project ID and day), events with same IDs are only deduplicated if their timestamps fall on the same day. The latest event always wins and overwrites the value of events received earlier in that day. Since we increment counters and frequencies here before events get inserted to eventstream these numbers may be larger than the total number of events if we receive duplicate event IDs that fall on the same day (that do not hit cache first). """ # Normalize if needed if not self._normalized: if not assume_normalized: self.normalize() self._normalized = True data = self._data project = Project.objects.get_from_cache(id=project_id) project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id) # Pull out the culprit culprit = self.get_culprit() # Pull the toplevel data we're interested in level = data.get("level") # TODO(mitsuhiko): this code path should be gone by July 2018. # This is going to be fine because no code actually still depends # on integers here. When we need an integer it will be converted # into one later. Old workers used to send integers here. if level is not None and isinstance(level, six.integer_types): level = LOG_LEVELS[level] transaction_name = data.get("transaction") logger_name = data.get("logger") release = data.get("release") dist = data.get("dist") environment = data.get("environment") recorded_timestamp = data.get("timestamp") # We need to swap out the data with the one internal to the newly # created event object event = self._get_event_instance(project_id=project_id) self._data = data = event.data.data event._project_cache = project date = event.datetime platform = event.platform event_id = event.event_id if transaction_name: transaction_name = force_text(transaction_name) # Right now the event type is the signal to skip the group. This # is going to change a lot. if event.get_event_type() == "transaction": issueless_event = True else: issueless_event = False # Some of the data that are toplevel attributes are duplicated # into tags (logger, level, environment, transaction). These are # different from legacy attributes which are normalized into tags # ahead of time (site, server_name). setdefault_path(data, "tags", value=[]) set_tag(data, "level", level) if logger_name: set_tag(data, "logger", logger_name) if environment: set_tag(data, "environment", environment) if transaction_name: set_tag(data, "transaction", transaction_name) if release: # dont allow a conflicting 'release' tag pop_tag(data, "release") release = Release.get_or_create(project=project, version=release, date_added=date) set_tag(data, "sentry:release", release.version) if dist and release: dist = release.add_dist(dist, date) # dont allow a conflicting 'dist' tag pop_tag(data, "dist") set_tag(data, "sentry:dist", dist.name) else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag pop_tag(data, "user") set_tag(data, "sentry:user", event_user.tag_value) # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. grouping_config = load_grouping_config( get_grouping_config_dict_for_event_data(data, project)) normalize_stacktraces_for_grouping(data, grouping_config) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: if get_tag(data, key) is None: set_tag(data, key, value) for path, iface in six.iteritems(event.interfaces): for k, v in iface.iter_tags(): set_tag(data, k, v) # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.path, None) # The active grouping config was put into the event in the # normalize step before. We now also make sure that the # fingerprint was set to `'{{ default }}' just in case someone # removed it from the payload. The call to get_hashes will then # look at `grouping_config` to pick the right parameters. data["fingerprint"] = data.get("fingerprint") or ["{{ default }}"] apply_server_fingerprinting( data, get_fingerprinting_config_for_project(project)) # Here we try to use the grouping config that was requested in the # event. If that config has since been deleted (because it was an # experimental grouping config) we fall back to the default. try: hashes = event.get_hashes() except GroupingConfigNotFound: data["grouping_config"] = get_grouping_config_dict_for_project( project) hashes = event.get_hashes() data["hashes"] = hashes # we want to freeze not just the metadata and type in but also the # derived attributes. The reason for this is that we push this # data into kafka for snuba processing and our postprocessing # picks up the data right from the snuba topic. For most usage # however the data is dynamically overridden by Event.title and # Event.location (See Event.as_dict) materialized_metadata = self.materialize_metadata() data.update(materialized_metadata) data["culprit"] = culprit received_timestamp = event.data.get("received") or float( event.datetime.strftime("%s")) if not issueless_event: # The group gets the same metadata as the event when it's flushed but # additionally the `last_received` key is set. This key is used by # _save_aggregate. group_metadata = dict(materialized_metadata) group_metadata["last_received"] = received_timestamp kwargs = { "platform": platform, "message": event.search_message, "culprit": culprit, "logger": logger_name, "level": LOG_LEVELS_MAP.get(level), "last_seen": date, "first_seen": date, "active_at": date, "data": group_metadata, } if release: kwargs["first_release"] = release try: group, is_new, is_regression = self._save_aggregate( event=event, hashes=hashes, release=release, **kwargs) except HashDiscarded: event_discarded.send_robust(project=project, sender=EventManager) metrics.incr( "events.discarded", skip_internal=True, tags={ "organization_id": project.organization_id, "platform": platform }, ) raise else: event_saved.send_robust(project=project, event_size=event.size, sender=EventManager) event.group = group else: group = None is_new = False is_regression = False event_saved.send_robust(project=project, event_size=event.size, sender=EventManager) # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) environment = Environment.get_or_create(project=project, name=environment) if group: group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, defaults={"first_release": release if release else None}, ) else: is_new_group_environment = False if release: ReleaseEnvironment.get_or_create(project=project, release=release, environment=environment, datetime=date) ReleaseProjectEnvironment.get_or_create(project=project, release=release, environment=environment, datetime=date) if group: grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date) counters = [(tsdb.models.project, project.id)] if group: counters.append((tsdb.models.group, group.id)) if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [] if group: frequencies.append((tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1 } })) if release: frequencies.append((tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1 } })) if frequencies: tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) if group: UserReport.objects.filter(project=project, event_id=event_id).update( group=group, environment=environment) # Enusre the _metrics key exists. This is usually created during # and prefilled with ingestion sizes. event_metrics = event.data.get("_metrics") or {} event.data["_metrics"] = event_metrics # Capture the actual size that goes into node store. event_metrics["bytes.stored.event"] = len( json.dumps(dict(event.data.items()))) # Load attachments first, but persist them at the very last after # posting to eventstream to make sure all counters and eventstream are # incremented for sure. attachments = self.get_attachments(cache_key, event) for attachment in attachments: key = "bytes.stored.%s" % (attachment.type, ) event_metrics[key] = (event_metrics.get(key) or 0) + len( attachment.data) # Write the event to Nodestore event.data.save() if event_user: counters = [(tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, ))] if group: counters.append((tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, ))) tsdb.record_multi(counters, timestamp=event.datetime, environment_id=environment.id) if release: if is_new: buffer.incr( ReleaseProject, {"new_groups": 1}, { "release_id": release.id, "project_id": project.id }, ) if is_new_group_environment: buffer.incr( ReleaseProjectEnvironment, {"new_issues_count": 1}, { "project_id": project.id, "release_id": release.id, "environment_id": environment.id, }, ) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send_robust(project=project, event=event, sender=Project) eventstream.insert( group=group, event=event, is_new=is_new, is_regression=is_regression, is_new_group_environment=is_new_group_environment, primary_hash=hashes[0], # We are choosing to skip consuming the event back # in the eventstream if it's flagged as raw. # This means that we want to publish the event # through the event stream, but we don't care # about post processing and handling the commit. skip_consume=raw, ) # Do this last to ensure signals get emitted even if connection to the # file store breaks temporarily. self.save_attachments(attachments, event) metric_tags = {"from_relay": "_relay_processed" in self._data} metrics.timing("events.latency", received_timestamp - recorded_timestamp, tags=metric_tags) metrics.timing("events.size.data.post_save", event.size, tags=metric_tags) metrics.incr( "events.post_save.normalize.errors", amount=len(self._data.get("errors") or ()), tags=metric_tags, ) return event
def save(self, project_id, raw=False, assume_normalized=False, cache_key=None): """ After normalizing and processing an event, save adjacent models such as releases and environments to postgres and write the event into eventstream. From there it will be picked up by Snuba and post-processing. We re-insert events with duplicate IDs into Snuba, which is responsible for deduplicating events. Since deduplication in Snuba is on the primary key (based on event ID, project ID and day), events with same IDs are only deduplicated if their timestamps fall on the same day. The latest event always wins and overwrites the value of events received earlier in that day. Since we increment counters and frequencies here before events get inserted to eventstream these numbers may be larger than the total number of events if we receive duplicate event IDs that fall on the same day (that do not hit cache first). """ # Normalize if needed if not self._normalized: if not assume_normalized: self.normalize() self._normalized = True with metrics.timer("event_manager.save.project.get_from_cache"): project = Project.objects.get_from_cache(id=project_id) with metrics.timer("event_manager.save.organization.get_from_cache"): project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id) job = {"data": self._data, "project_id": project_id, "raw": raw} jobs = [job] projects = {project.id: project} _pull_out_data(jobs, projects) # Right now the event type is the signal to skip the group. This # is going to change a lot. if job["event"].get_event_type() == "transaction": issueless_event = True else: issueless_event = False _get_or_create_release_many(jobs, projects) # XXX: remove if job["dist"] and job["release"]: job["dist"] = job["release"].add_dist(job["dist"], job["event"].datetime) # dont allow a conflicting 'dist' tag pop_tag(job["data"], "dist") set_tag(job["data"], "sentry:dist", job["dist"].name) else: job["dist"] = None _get_event_user_many(jobs, projects) with metrics.timer("event_manager.load_grouping_config"): # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. grouping_config = load_grouping_config( get_grouping_config_dict_for_event_data(job["data"], project)) with metrics.timer("event_manager.normalize_stacktraces_for_grouping"): normalize_stacktraces_for_grouping(job["data"], grouping_config) _derive_plugin_tags_many(jobs, projects) _derive_interface_tags_many(jobs) with metrics.timer("event_manager.apply_server_fingerprinting"): # The active grouping config was put into the event in the # normalize step before. We now also make sure that the # fingerprint was set to `'{{ default }}' just in case someone # removed it from the payload. The call to get_hashes will then # look at `grouping_config` to pick the right parameters. job["data"]["fingerprint"] = job["data"].get("fingerprint") or [ "{{ default }}" ] apply_server_fingerprinting( job["data"], get_fingerprinting_config_for_project(project)) with metrics.timer("event_manager.event.get_hashes"): # Here we try to use the grouping config that was requested in the # event. If that config has since been deleted (because it was an # experimental grouping config) we fall back to the default. try: hashes = job["event"].get_hashes() except GroupingConfigNotFound: job["data"][ "grouping_config"] = get_grouping_config_dict_for_project( project) hashes = job["event"].get_hashes() job["data"]["hashes"] = hashes _materialize_metadata_many(jobs) job["received_timestamp"] = received_timestamp = job["event"].data.get( "received") or float(job["event"].datetime.strftime("%s")) if not issueless_event: # The group gets the same metadata as the event when it's flushed but # additionally the `last_received` key is set. This key is used by # _save_aggregate. group_metadata = dict(job["materialized_metadata"]) group_metadata["last_received"] = received_timestamp kwargs = { "platform": job["platform"], "message": job["event"].search_message, "culprit": job["culprit"], "logger": job["logger_name"], "level": LOG_LEVELS_MAP.get(job["level"]), "last_seen": job["event"].datetime, "first_seen": job["event"].datetime, "active_at": job["event"].datetime, "data": group_metadata, } if job["release"]: kwargs["first_release"] = job["release"] try: job["group"], job["is_new"], job[ "is_regression"] = _save_aggregate(event=job["event"], hashes=hashes, release=job["release"], **kwargs) except HashDiscarded: event_discarded.send_robust(project=project, sender=EventManager) metrics.incr( "events.discarded", skip_internal=True, tags={ "organization_id": project.organization_id, "platform": job["platform"] }, ) raise job["event"].group = job["group"] else: job["group"] = None job["is_new"] = False job["is_regression"] = False _send_event_saved_signal_many(jobs, projects) # store a reference to the group id to guarantee validation of isolation # XXX(markus): No clue what this does job["event"].data.bind_ref(job["event"]) _get_or_create_environment_many(jobs, projects) if job["group"]: group_environment, job[ "is_new_group_environment"] = GroupEnvironment.get_or_create( group_id=job["group"].id, environment_id=job["environment"].id, defaults={"first_release": job["release"] or None}, ) else: job["is_new_group_environment"] = False _get_or_create_release_associated_models(jobs, projects) if job["release"] and job["group"]: job["grouprelease"] = GroupRelease.get_or_create( group=job["group"], release=job["release"], environment=job["environment"], datetime=job["event"].datetime, ) _tsdb_record_all_metrics(jobs) if job["group"]: UserReport.objects.filter(project=project, event_id=job["event"].event_id).update( group=job["group"], environment=job["environment"]) # Enusre the _metrics key exists. This is usually created during # and prefilled with ingestion sizes. event_metrics = job["event"].data.get("_metrics") or {} job["event"].data["_metrics"] = event_metrics # Capture the actual size that goes into node store. event_metrics["bytes.stored.event"] = len( json.dumps(dict(job["event"].data.items()))) if not issueless_event: # Load attachments first, but persist them at the very last after # posting to eventstream to make sure all counters and eventstream are # incremented for sure. attachments = get_attachments(cache_key, job["event"]) for attachment in attachments: key = "bytes.stored.%s" % (attachment.type, ) event_metrics[key] = (event_metrics.get(key) or 0) + len( attachment.data) _nodestore_save_many(jobs) if job["release"] and not issueless_event: if job["is_new"]: buffer.incr( ReleaseProject, {"new_groups": 1}, { "release_id": job["release"].id, "project_id": project.id }, ) if job["is_new_group_environment"]: buffer.incr( ReleaseProjectEnvironment, {"new_issues_count": 1}, { "project_id": project.id, "release_id": job["release"].id, "environment_id": job["environment"].id, }, ) if not raw: if not project.first_event: project.update(first_event=job["event"].datetime) first_event_received.send_robust(project=project, event=job["event"], sender=Project) _eventstream_insert_many(jobs) if not issueless_event: # Do this last to ensure signals get emitted even if connection to the # file store breaks temporarily. save_attachments(attachments, job["event"]) metric_tags = {"from_relay": "_relay_processed" in job["data"]} metrics.timing("events.latency", received_timestamp - job["recorded_timestamp"], tags=metric_tags) metrics.timing("events.size.data.post_save", job["event"].size, tags=metric_tags) metrics.incr( "events.post_save.normalize.errors", amount=len(job["data"].get("errors") or ()), tags=metric_tags, ) self._data = job["event"].data.data return job["event"]
def save(self, project, raw=False): from sentry.tasks.post_process import index_event_tags data = self.data project = Project.objects.get_from_cache(id=project) # Check to make sure we're not about to do a bunch of work that's # already been done if we've processed an event with this ID. (This # isn't a perfect solution -- this doesn't handle ``EventMapping`` and # there's a race condition between here and when the event is actually # saved, but it's an improvement. See GH-7677.) try: event = Event.objects.get( project_id=project.id, event_id=data['event_id'], ) except Event.DoesNotExist: pass else: self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': data['event_id'], 'project_id': project.id, 'model': Event.__name__, } ) return event # First we pull out our top-level (non-data attr) kwargs event_id = data.pop('event_id') level = data.pop('level') transaction_name = data.pop('transaction', None) culprit = data.pop('culprit', None) logger_name = data.pop('logger', None) server_name = data.pop('server_name', None) site = data.pop('site', None) checksum = data.pop('checksum', None) fingerprint = data.pop('fingerprint', None) platform = data.pop('platform', None) release = data.pop('release', None) dist = data.pop('dist', None) environment = data.pop('environment', None) # unused time_spent = data.pop('time_spent', None) message = data.pop('message', '') if not culprit: if transaction_name: culprit = transaction_name else: culprit = generate_culprit(data, platform=platform) culprit = force_text(culprit) if transaction_name: transaction_name = force_text(transaction_name) recorded_timestamp = data.pop('timestamp') date = datetime.fromtimestamp(recorded_timestamp) date = date.replace(tzinfo=timezone.utc) kwargs = { 'platform': platform, } event = Event( project_id=project.id, event_id=event_id, data=data, time_spent=time_spent, datetime=date, **kwargs ) event._project_cache = project data = event.data.data # convert this to a dict to ensure we're only storing one value per key # as most parts of Sentry dont currently play well with multiple values tags = dict(data.get('tags') or []) tags['level'] = LOG_LEVELS[level] if logger_name: tags['logger'] = logger_name if server_name: tags['server_name'] = server_name if site: tags['site'] = site if environment: tags['environment'] = environment if transaction_name: tags['transaction'] = transaction_name if release: # dont allow a conflicting 'release' tag if 'release' in tags: del tags['release'] release = Release.get_or_create( project=project, version=release, date_added=date, ) tags['sentry:release'] = release.version if dist and release: dist = release.add_dist(dist, date) tags['sentry:dist'] = dist.name else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag if 'user' in tags: del tags['user'] tags['sentry:user'] = event_user.tag_value # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. normalize_in_app(data) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: tags.setdefault(key, value) for path, iface in six.iteritems(event.interfaces): for k, v in iface.iter_tags(): tags[k] = v # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.get_path(), None) # tags are stored as a tuple tags = tags.items() data['tags'] = tags data['fingerprint'] = fingerprint or ['{{ default }}'] # prioritize fingerprint over checksum as its likely the client defaulted # a checksum whereas the fingerprint was explicit if fingerprint: hashes = [md5_from_hash(h) for h in get_hashes_from_fingerprint(event, fingerprint)] elif checksum: if HASH_RE.match(checksum): hashes = [checksum] else: hashes = [md5_from_hash([checksum]), checksum] data['checksum'] = checksum else: hashes = [md5_from_hash(h) for h in get_hashes_for_event(event)] # TODO(dcramer): temp workaround for complexity data['message'] = message event_type = eventtypes.get(data.get('type', 'default'))(data) event_metadata = event_type.get_metadata() # TODO(dcramer): temp workaround for complexity del data['message'] data['type'] = event_type.key data['metadata'] = event_metadata # index components into ``Event.message`` # See GH-3248 if event_type.key != 'default': if 'sentry.interfaces.Message' in data and \ data['sentry.interfaces.Message']['message'] != message: message = u'{} {}'.format( message, data['sentry.interfaces.Message']['message'], ) if not message: message = '' elif not isinstance(message, six.string_types): message = force_text(message) for value in six.itervalues(event_metadata): value_u = force_text(value, errors='replace') if value_u not in message: message = u'{} {}'.format(message, value_u) if culprit and culprit not in message: culprit_u = force_text(culprit, errors='replace') message = u'{} {}'.format(message, culprit_u) message = trim(message.strip(), settings.SENTRY_MAX_MESSAGE_LENGTH) event.message = message kwargs['message'] = message received_timestamp = event.data.get('received') or float(event.datetime.strftime('%s')) group_kwargs = kwargs.copy() group_kwargs.update( { 'culprit': culprit, 'logger': logger_name, 'level': level, 'last_seen': date, 'first_seen': date, 'active_at': date, 'data': { 'last_received': received_timestamp, 'type': event_type.key, # we cache the events metadata on the group to ensure its # accessible in the stream 'metadata': event_metadata, }, } ) if release: group_kwargs['first_release'] = release try: group, is_new, is_regression, is_sample = self._save_aggregate( event=event, hashes=hashes, release=release, **group_kwargs ) except HashDiscarded: event_discarded.send_robust( project=project, sender=EventManager, ) metrics.incr( 'events.discarded', skip_internal=True, tags={ 'organization_id': project.organization_id, 'platform': platform, }, ) raise else: event_saved.send_robust( project=project, event_size=event.size, sender=EventManager, ) event.group = group # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) # When an event was sampled, the canonical source of truth # is the EventMapping table since we aren't going to be writing out an actual # Event row. Otherwise, if the Event isn't being sampled, we can safely # rely on the Event table itself as the source of truth and ignore # EventMapping since it's redundant information. if is_sample: try: with transaction.atomic(using=router.db_for_write(EventMapping)): EventMapping.objects.create(project=project, group=group, event_id=event_id) except IntegrityError: self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': EventMapping.__name__, } ) return event environment = Environment.get_or_create( project=project, name=environment, ) group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, defaults={ 'first_release_id': release.id if release else None, }, ) if release: ReleaseEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) ReleaseProjectEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date, ) counters = [ (tsdb.models.group, group.id), (tsdb.models.project, project.id), ] if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [ # (tsdb.models.frequent_projects_by_organization, { # project.organization_id: { # project.id: 1, # }, # }), # (tsdb.models.frequent_issues_by_project, { # project.id: { # group.id: 1, # }, # }) (tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1, }, }) ] if release: frequencies.append( (tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1, }, }) ) tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) UserReport.objects.filter( project=project, event_id=event_id, ).update( group=group, environment=environment, ) # save the event unless its been sampled if not is_sample: try: with transaction.atomic(using=router.db_for_write(Event)): event.save() except IntegrityError: self.logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, } ) return event index_event_tags.delay( organization_id=project.organization_id, project_id=project.id, group_id=group.id, environment_id=environment.id, event_id=event.id, tags=tags, date_added=event.datetime, ) if event_user: tsdb.record_multi( ( (tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, )), (tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, )), ), timestamp=event.datetime, environment_id=environment.id, ) if release: if is_new: buffer.incr( ReleaseProject, {'new_groups': 1}, { 'release_id': release.id, 'project_id': project.id, } ) if is_new_group_environment: buffer.incr( ReleaseProjectEnvironment, {'new_issues_count': 1}, { 'project_id': project.id, 'release_id': release.id, 'environment_id': environment.id, } ) safe_execute(Group.objects.add_tags, group, environment, tags, _with_transaction=False) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send_robust(project=project, group=group, sender=Project) eventstream.insert( group=group, event=event, is_new=is_new, is_sample=is_sample, is_regression=is_regression, is_new_group_environment=is_new_group_environment, primary_hash=hashes[0], # We are choosing to skip consuming the event back # in the eventstream if it's flagged as raw. # This means that we want to publish the event # through the event stream, but we don't care # about post processing and handling the commit. skip_consume=raw, ) metrics.timing( 'events.latency', received_timestamp - recorded_timestamp, tags={ 'project_id': project.id, }, ) return event
def save(self, project_id, raw=False, assume_normalized=False): # Normalize if needed if not self._normalized: if not assume_normalized: self.normalize() self._normalized = True data = self._data project = Project.objects.get_from_cache(id=project_id) project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id) # Check to make sure we're not about to do a bunch of work that's # already been done if we've processed an event with this ID. (This # isn't a perfect solution -- this doesn't handle ``EventMapping`` and # there's a race condition between here and when the event is actually # saved, but it's an improvement. See GH-7677.) try: event = Event.objects.get( project_id=project.id, event_id=data['event_id'], ) except Event.DoesNotExist: pass else: # Make sure we cache on the project before returning event._project_cache = project logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': data['event_id'], 'project_id': project.id, 'model': Event.__name__, } ) return event # Pull out the culprit culprit = self.get_culprit() # Pull the toplevel data we're interested in level = data.get('level') # TODO(mitsuhiko): this code path should be gone by July 2018. # This is going to be fine because no code actually still depends # on integers here. When we need an integer it will be converted # into one later. Old workers used to send integers here. if level is not None and isinstance(level, six.integer_types): level = LOG_LEVELS[level] transaction_name = data.get('transaction') logger_name = data.get('logger') release = data.get('release') dist = data.get('dist') environment = data.get('environment') recorded_timestamp = data.get('timestamp') # We need to swap out the data with the one internal to the newly # created event object event = self._get_event_instance(project_id=project_id) self._data = data = event.data.data event._project_cache = project date = event.datetime platform = event.platform event_id = event.event_id if transaction_name: transaction_name = force_text(transaction_name) # Some of the data that are toplevel attributes are duplicated # into tags (logger, level, environment, transaction). These are # different from legacy attributes which are normalized into tags # ahead of time (site, server_name). setdefault_path(data, 'tags', value=[]) set_tag(data, 'level', level) if logger_name: set_tag(data, 'logger', logger_name) if environment: set_tag(data, 'environment', environment) if transaction_name: set_tag(data, 'transaction', transaction_name) if release: # dont allow a conflicting 'release' tag pop_tag(data, 'release') release = Release.get_or_create( project=project, version=release, date_added=date, ) set_tag(data, 'sentry:release', release.version) if dist and release: dist = release.add_dist(dist, date) # dont allow a conflicting 'dist' tag pop_tag(data, 'dist') set_tag(data, 'sentry:dist', dist.name) else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag pop_tag(data, 'user') set_tag(data, 'sentry:user', event_user.tag_value) # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. grouping_config = load_grouping_config( get_grouping_config_dict_for_event_data(data, project)) normalize_stacktraces_for_grouping(data, grouping_config) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: if get_tag(data, key) is None: set_tag(data, key, value) for path, iface in six.iteritems(event.interfaces): for k, v in iface.iter_tags(): set_tag(data, k, v) # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.path, None) # The active grouping config was put into the event in the # normalize step before. We now also make sure that the # fingerprint was set to `'{{ default }}' just in case someone # removed it from the payload. The call to get_hashes will then # look at `grouping_config` to pick the right paramters. data['fingerprint'] = data.get('fingerprint') or ['{{ default }}'] apply_server_fingerprinting(data, get_fingerprinting_config_for_project(project)) # Here we try to use the grouping config that was requested in the # event. If that config has since been deleted (because it was an # experimental grouping config) we fall back to the default. try: hashes = event.get_hashes() except GroupingConfigNotFound: data['grouping_config'] = get_grouping_config_dict_for_project(project) hashes = event.get_hashes() data['hashes'] = hashes # we want to freeze not just the metadata and type in but also the # derived attributes. The reason for this is that we push this # data into kafka for snuba processing and our postprocessing # picks up the data right from the snuba topic. For most usage # however the data is dynamically overriden by Event.title and # Event.location (See Event.as_dict) materialized_metadata = self.materialize_metadata() event_metadata = materialized_metadata['metadata'] data.update(materialized_metadata) data['culprit'] = culprit # index components into ``Event.message`` # See GH-3248 event.message = self.get_search_message(event_metadata, culprit) received_timestamp = event.data.get('received') or float(event.datetime.strftime('%s')) # The group gets the same metadata as the event when it's flushed but # additionally the `last_received` key is set. This key is used by # _save_aggregate. group_metadata = dict(materialized_metadata) group_metadata['last_received'] = received_timestamp kwargs = { 'platform': platform, 'message': event.message, 'culprit': culprit, 'logger': logger_name, 'level': LOG_LEVELS_MAP.get(level), 'last_seen': date, 'first_seen': date, 'active_at': date, 'data': group_metadata, } if release: kwargs['first_release'] = release try: group, is_new, is_regression, is_sample = self._save_aggregate( event=event, hashes=hashes, release=release, **kwargs ) except HashDiscarded: event_discarded.send_robust( project=project, sender=EventManager, ) metrics.incr( 'events.discarded', skip_internal=True, tags={ 'organization_id': project.organization_id, 'platform': platform, }, ) raise else: event_saved.send_robust( project=project, event_size=event.size, sender=EventManager, ) event.group = group # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) # When an event was sampled, the canonical source of truth # is the EventMapping table since we aren't going to be writing out an actual # Event row. Otherwise, if the Event isn't being sampled, we can safely # rely on the Event table itself as the source of truth and ignore # EventMapping since it's redundant information. if is_sample: try: with transaction.atomic(using=router.db_for_write(EventMapping)): EventMapping.objects.create(project=project, group=group, event_id=event_id) except IntegrityError: logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': EventMapping.__name__, } ) return event environment = Environment.get_or_create( project=project, name=environment, ) group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, defaults={ 'first_release': release if release else None, }, ) if release: ReleaseEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) ReleaseProjectEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date, ) counters = [ (tsdb.models.group, group.id), (tsdb.models.project, project.id), ] if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [ # (tsdb.models.frequent_projects_by_organization, { # project.organization_id: { # project.id: 1, # }, # }), # (tsdb.models.frequent_issues_by_project, { # project.id: { # group.id: 1, # }, # }) (tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1, }, }) ] if release: frequencies.append( (tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1, }, }) ) tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) UserReport.objects.filter( project=project, event_id=event_id, ).update( group=group, environment=environment, ) # Update any event attachment that arrived before the event group was defined. EventAttachment.objects.filter( project_id=project.id, event_id=event_id, ).update( group_id=group.id, ) # save the event unless its been sampled if not is_sample: try: with transaction.atomic(using=router.db_for_write(Event)): event.save() except IntegrityError: logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, } ) return event tagstore.delay_index_event_tags( organization_id=project.organization_id, project_id=project.id, group_id=group.id, environment_id=environment.id, event_id=event.id, tags=event.tags, date_added=event.datetime, ) if event_user: tsdb.record_multi( ( (tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, )), (tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, )), ), timestamp=event.datetime, environment_id=environment.id, ) if release: if is_new: buffer.incr( ReleaseProject, {'new_groups': 1}, { 'release_id': release.id, 'project_id': project.id, } ) if is_new_group_environment: buffer.incr( ReleaseProjectEnvironment, {'new_issues_count': 1}, { 'project_id': project.id, 'release_id': release.id, 'environment_id': environment.id, } ) safe_execute( Group.objects.add_tags, group, environment, event.get_tags(), _with_transaction=False) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send_robust(project=project, group=group, sender=Project) eventstream.insert( group=group, event=event, is_new=is_new, is_sample=is_sample, is_regression=is_regression, is_new_group_environment=is_new_group_environment, primary_hash=hashes[0], # We are choosing to skip consuming the event back # in the eventstream if it's flagged as raw. # This means that we want to publish the event # through the event stream, but we don't care # about post processing and handling the commit. skip_consume=raw, ) metrics.timing( 'events.latency', received_timestamp - recorded_timestamp, tags={ 'project_id': project.id, }, ) metrics.timing( 'events.size.data.post_save', event.size, tags={'project_id': project.id} ) return event
def save(self, project, raw=False): from sentry.tasks.post_process import index_event_tags data = self.data project = Project.objects.get_from_cache(id=project) # Check to make sure we're not about to do a bunch of work that's # already been done if we've processed an event with this ID. (This # isn't a perfect solution -- this doesn't handle ``EventMapping`` and # there's a race condition between here and when the event is actually # saved, but it's an improvement. See GH-7677.) try: event = Event.objects.get( project_id=project.id, event_id=data['event_id'], ) except Event.DoesNotExist: pass else: self.logger.info('duplicate.found', exc_info=True, extra={ 'event_uuid': data['event_id'], 'project_id': project.id, 'model': Event.__name__, }) return event # First we pull out our top-level (non-data attr) kwargs event_id = data.pop('event_id') level = data.pop('level') transaction_name = data.pop('transaction', None) culprit = data.pop('culprit', None) logger_name = data.pop('logger', None) server_name = data.pop('server_name', None) site = data.pop('site', None) checksum = data.pop('checksum', None) fingerprint = data.pop('fingerprint', None) platform = data.pop('platform', None) release = data.pop('release', None) dist = data.pop('dist', None) environment = data.pop('environment', None) # unused time_spent = data.pop('time_spent', None) message = data.pop('message', '') if not culprit: if transaction_name: culprit = transaction_name else: culprit = generate_culprit(data, platform=platform) culprit = force_text(culprit) if transaction_name: transaction_name = force_text(transaction_name) recorded_timestamp = data.pop('timestamp') date = datetime.fromtimestamp(recorded_timestamp) date = date.replace(tzinfo=timezone.utc) kwargs = { 'platform': platform, } event = Event(project_id=project.id, event_id=event_id, data=data, time_spent=time_spent, datetime=date, **kwargs) event._project_cache = project data = event.data.data # convert this to a dict to ensure we're only storing one value per key # as most parts of Sentry dont currently play well with multiple values tags = dict(data.get('tags') or []) tags['level'] = LOG_LEVELS[level] if logger_name: tags['logger'] = logger_name if server_name: tags['server_name'] = server_name if site: tags['site'] = site if environment: tags['environment'] = environment if transaction_name: tags['transaction'] = transaction_name if release: # dont allow a conflicting 'release' tag if 'release' in tags: del tags['release'] release = Release.get_or_create( project=project, version=release, date_added=date, ) tags['sentry:release'] = release.version if dist and release: dist = release.add_dist(dist, date) tags['sentry:dist'] = dist.name else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag if 'user' in tags: del tags['user'] tags['sentry:user'] = event_user.tag_value # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. normalize_in_app(data) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: tags.setdefault(key, value) for path, iface in six.iteritems(event.interfaces): for k, v in iface.iter_tags(): tags[k] = v # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.get_path(), None) # tags are stored as a tuple tags = tags.items() data['tags'] = tags data['fingerprint'] = fingerprint or ['{{ default }}'] # prioritize fingerprint over checksum as its likely the client defaulted # a checksum whereas the fingerprint was explicit if fingerprint: hashes = [ md5_from_hash(h) for h in get_hashes_from_fingerprint(event, fingerprint) ] elif checksum: if HASH_RE.match(checksum): hashes = [checksum] else: hashes = [md5_from_hash([checksum]), checksum] data['checksum'] = checksum else: hashes = [md5_from_hash(h) for h in get_hashes_for_event(event)] # TODO(dcramer): temp workaround for complexity data['message'] = message event_type = eventtypes.get(data.get('type', 'default'))(data) event_metadata = event_type.get_metadata() # TODO(dcramer): temp workaround for complexity del data['message'] data['type'] = event_type.key data['metadata'] = event_metadata # index components into ``Event.message`` # See GH-3248 if event_type.key != 'default': if 'sentry.interfaces.Message' in data and \ data['sentry.interfaces.Message']['message'] != message: message = u'{} {}'.format( message, data['sentry.interfaces.Message']['message'], ) if not message: message = '' elif not isinstance(message, six.string_types): message = force_text(message) for value in six.itervalues(event_metadata): value_u = force_text(value, errors='replace') if value_u not in message: message = u'{} {}'.format(message, value_u) if culprit and culprit not in message: culprit_u = force_text(culprit, errors='replace') message = u'{} {}'.format(message, culprit_u) message = trim(message.strip(), settings.SENTRY_MAX_MESSAGE_LENGTH) event.message = message kwargs['message'] = message received_timestamp = event.data.get('received') or float( event.datetime.strftime('%s')) group_kwargs = kwargs.copy() group_kwargs.update({ 'culprit': culprit, 'logger': logger_name, 'level': level, 'last_seen': date, 'first_seen': date, 'active_at': date, 'data': { 'last_received': received_timestamp, 'type': event_type.key, # we cache the events metadata on the group to ensure its # accessible in the stream 'metadata': event_metadata, }, }) if release: group_kwargs['first_release'] = release try: group, is_new, is_regression, is_sample = self._save_aggregate( event=event, hashes=hashes, release=release, **group_kwargs) except HashDiscarded: event_discarded.send_robust( project=project, sender=EventManager, ) metrics.incr( 'events.discarded', skip_internal=True, tags={ 'organization_id': project.organization_id, 'platform': platform, }, ) raise else: event_saved.send_robust( project=project, event_size=event.size, sender=EventManager, ) event.group = group # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) # When an event was sampled, the canonical source of truth # is the EventMapping table since we aren't going to be writing out an actual # Event row. Otherwise, if the Event isn't being sampled, we can safely # rely on the Event table itself as the source of truth and ignore # EventMapping since it's redundant information. if is_sample: try: with transaction.atomic( using=router.db_for_write(EventMapping)): EventMapping.objects.create(project=project, group=group, event_id=event_id) except IntegrityError: self.logger.info('duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': EventMapping.__name__, }) return event environment = Environment.get_or_create( project=project, name=environment, ) group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, defaults={ 'first_release_id': release.id if release else None, }, ) if release: ReleaseEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) ReleaseProjectEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date, ) counters = [ (tsdb.models.group, group.id), (tsdb.models.project, project.id), ] if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [ # (tsdb.models.frequent_projects_by_organization, { # project.organization_id: { # project.id: 1, # }, # }), # (tsdb.models.frequent_issues_by_project, { # project.id: { # group.id: 1, # }, # }) (tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1, }, }) ] if release: frequencies.append((tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1, }, })) tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) UserReport.objects.filter( project=project, event_id=event_id, ).update( group=group, environment=environment, ) # save the event unless its been sampled if not is_sample: try: with transaction.atomic(using=router.db_for_write(Event)): event.save() except IntegrityError: self.logger.info('duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, }) return event index_event_tags.delay( organization_id=project.organization_id, project_id=project.id, group_id=group.id, environment_id=environment.id, event_id=event.id, tags=tags, date_added=event.datetime, ) if event_user: tsdb.record_multi( ( (tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, )), (tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, )), ), timestamp=event.datetime, environment_id=environment.id, ) if release: if is_new: buffer.incr(ReleaseProject, {'new_groups': 1}, { 'release_id': release.id, 'project_id': project.id, }) if is_new_group_environment: buffer.incr(ReleaseProjectEnvironment, {'new_issues_count': 1}, { 'project_id': project.id, 'release_id': release.id, 'environment_id': environment.id, }) safe_execute(Group.objects.add_tags, group, environment, tags, _with_transaction=False) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send_robust(project=project, group=group, sender=Project) eventstream.insert( group=group, event=event, is_new=is_new, is_sample=is_sample, is_regression=is_regression, is_new_group_environment=is_new_group_environment, primary_hash=hashes[0], # We are choosing to skip consuming the event back # in the eventstream if it's flagged as raw. # This means that we want to publish the event # through the event stream, but we don't care # about post processing and handling the commit. skip_consume=raw, ) metrics.timing( 'events.latency', received_timestamp - recorded_timestamp, tags={ 'project_id': project.id, }, ) return event
def save(self, project_id, raw=False, assume_normalized=False, start_time=None, cache_key=None): """ After normalizing and processing an event, save adjacent models such as releases and environments to postgres and write the event into eventstream. From there it will be picked up by Snuba and post-processing. We re-insert events with duplicate IDs into Snuba, which is responsible for deduplicating events. Since deduplication in Snuba is on the primary key (based on event ID, project ID and day), events with same IDs are only deduplicated if their timestamps fall on the same day. The latest event always wins and overwrites the value of events received earlier in that day. Since we increment counters and frequencies here before events get inserted to eventstream these numbers may be larger than the total number of events if we receive duplicate event IDs that fall on the same day (that do not hit cache first). """ # Normalize if needed if not self._normalized: if not assume_normalized: self.normalize(project_id=project_id) self._normalized = True with metrics.timer("event_manager.save.project.get_from_cache"): project = Project.objects.get_from_cache(id=project_id) projects = {project.id: project} if self._data.get("type") == "transaction": self._data["project"] = int(project_id) job = {"data": self._data, "start_time": start_time} jobs = save_transaction_events([job], projects) return jobs[0]["event"] with metrics.timer("event_manager.save.organization.get_from_cache"): project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id ) job = {"data": self._data, "project_id": project_id, "raw": raw, "start_time": start_time} jobs = [job] _pull_out_data(jobs, projects) _get_or_create_release_many(jobs, projects) _get_event_user_many(jobs, projects) job["project_key"] = None if job["key_id"] is not None: with metrics.timer("event_manager.load_project_key"): try: job["project_key"] = ProjectKey.objects.get_from_cache(id=job["key_id"]) except ProjectKey.DoesNotExist: pass with metrics.timer("event_manager.load_grouping_config"): # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. grouping_config = load_grouping_config( get_grouping_config_dict_for_event_data(job["data"], project) ) with metrics.timer("event_manager.normalize_stacktraces_for_grouping"): normalize_stacktraces_for_grouping(job["data"], grouping_config) _derive_plugin_tags_many(jobs, projects) _derive_interface_tags_many(jobs) with metrics.timer("event_manager.apply_server_fingerprinting"): # The active grouping config was put into the event in the # normalize step before. We now also make sure that the # fingerprint was set to `'{{ default }}' just in case someone # removed it from the payload. The call to get_hashes will then # look at `grouping_config` to pick the right parameters. job["data"]["fingerprint"] = job["data"].get("fingerprint") or ["{{ default }}"] apply_server_fingerprinting(job["data"], get_fingerprinting_config_for_project(project)) with metrics.timer("event_manager.event.get_hashes"): # Here we try to use the grouping config that was requested in the # event. If that config has since been deleted (because it was an # experimental grouping config) we fall back to the default. try: hashes = job["event"].get_hashes() except GroupingConfigNotFound: job["data"]["grouping_config"] = get_grouping_config_dict_for_project(project) hashes = job["event"].get_hashes() job["data"]["hashes"] = hashes _materialize_metadata_many(jobs) # The group gets the same metadata as the event when it's flushed but # additionally the `last_received` key is set. This key is used by # _save_aggregate. group_metadata = dict(job["materialized_metadata"]) group_metadata["last_received"] = job["received_timestamp"] kwargs = { "platform": job["platform"], "message": job["event"].search_message, "culprit": job["culprit"], "logger": job["logger_name"], "level": LOG_LEVELS_MAP.get(job["level"]), "last_seen": job["event"].datetime, "first_seen": job["event"].datetime, "active_at": job["event"].datetime, "data": group_metadata, } if job["release"]: kwargs["first_release"] = job["release"] # Load attachments first, but persist them at the very last after # posting to eventstream to make sure all counters and eventstream are # incremented for sure. Also wait for grouping to remove attachments # based on the group counter. with metrics.timer("event_manager.get_attachments"): attachments = get_attachments(cache_key, job) try: job["group"], job["is_new"], job["is_regression"] = _save_aggregate( event=job["event"], hashes=hashes, release=job["release"], **kwargs ) except HashDiscarded: discard_event(job, attachments) raise job["event"].group = job["group"] # store a reference to the group id to guarantee validation of isolation # XXX(markus): No clue what this does job["event"].data.bind_ref(job["event"]) _get_or_create_environment_many(jobs, projects) if job["group"]: group_environment, job["is_new_group_environment"] = GroupEnvironment.get_or_create( group_id=job["group"].id, environment_id=job["environment"].id, defaults={"first_release": job["release"] or None}, ) else: job["is_new_group_environment"] = False _get_or_create_release_associated_models(jobs, projects) if job["release"] and job["group"]: job["grouprelease"] = GroupRelease.get_or_create( group=job["group"], release=job["release"], environment=job["environment"], datetime=job["event"].datetime, ) _tsdb_record_all_metrics(jobs) if job["group"]: UserReport.objects.filter(project=project, event_id=job["event"].event_id).update( group=job["group"], environment=job["environment"] ) with metrics.timer("event_manager.filter_attachments_for_group"): attachments = filter_attachments_for_group(attachments, job) # XXX: DO NOT MUTATE THE EVENT PAYLOAD AFTER THIS POINT _materialize_event_metrics(jobs) for attachment in attachments: key = "bytes.stored.%s" % (attachment.type,) old_bytes = job["event_metrics"].get(key) or 0 job["event_metrics"][key] = old_bytes + attachment.size _nodestore_save_many(jobs) save_unprocessed_event(project, event_id=job["event"].event_id) if job["release"]: if job["is_new"]: buffer.incr( ReleaseProject, {"new_groups": 1}, {"release_id": job["release"].id, "project_id": project.id}, ) if job["is_new_group_environment"]: buffer.incr( ReleaseProjectEnvironment, {"new_issues_count": 1}, { "project_id": project.id, "release_id": job["release"].id, "environment_id": job["environment"].id, }, ) if not raw: if not project.first_event: project.update(first_event=job["event"].datetime) first_event_received.send_robust( project=project, event=job["event"], sender=Project ) _eventstream_insert_many(jobs) # Do this last to ensure signals get emitted even if connection to the # file store breaks temporarily. with metrics.timer("event_manager.save_attachments"): save_attachments(cache_key, attachments, job) metric_tags = {"from_relay": "_relay_processed" in job["data"]} metrics.timing( "events.latency", job["received_timestamp"] - job["recorded_timestamp"], tags=metric_tags, ) metrics.timing("events.size.data.post_save", job["event"].size, tags=metric_tags) metrics.incr( "events.post_save.normalize.errors", amount=len(job["data"].get("errors") or ()), tags=metric_tags, ) _track_outcome_accepted_many(jobs) self._data = job["event"].data.data return job["event"]
def save(self, project_id, raw=False, assume_normalized=False): # Normalize if needed if not self._normalized: if not assume_normalized: self.normalize() self._normalized = True data = self._data project = Project.objects.get_from_cache(id=project_id) project._organization_cache = Organization.objects.get_from_cache( id=project.organization_id) # Check to make sure we're not about to do a bunch of work that's # already been done if we've processed an event with this ID. (This # isn't a perfect solution -- this doesn't handle ``EventMapping`` and # there's a race condition between here and when the event is actually # saved, but it's an improvement. See GH-7677.) try: event = Event.objects.get( project_id=project.id, event_id=data['event_id'], ) except Event.DoesNotExist: pass else: # Make sure we cache on the project before returning event._project_cache = project logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': data['event_id'], 'project_id': project.id, 'model': Event.__name__, } ) return event # Pull out the culprit culprit = self.get_culprit() # Pull the toplevel data we're interested in level = data.get('level') # TODO(mitsuhiko): this code path should be gone by July 2018. # This is going to be fine because no code actually still depends # on integers here. When we need an integer it will be converted # into one later. Old workers used to send integers here. if level is not None and isinstance(level, six.integer_types): level = LOG_LEVELS[level] transaction_name = data.get('transaction') logger_name = data.get('logger') release = data.get('release') dist = data.get('dist') environment = data.get('environment') recorded_timestamp = data.get('timestamp') # We need to swap out the data with the one internal to the newly # created event object event = self._get_event_instance(project_id=project_id) self._data = data = event.data.data event._project_cache = project date = event.datetime platform = event.platform event_id = event.event_id if transaction_name: transaction_name = force_text(transaction_name) # Some of the data that are toplevel attributes are duplicated # into tags (logger, level, environment, transaction). These are # different from legacy attributes which are normalized into tags # ahead of time (site, server_name). setdefault_path(data, 'tags', value=[]) set_tag(data, 'level', level) if logger_name: set_tag(data, 'logger', logger_name) if environment: set_tag(data, 'environment', environment) if transaction_name: set_tag(data, 'transaction', transaction_name) if release: # dont allow a conflicting 'release' tag pop_tag(data, 'release') release = Release.get_or_create( project=project, version=release, date_added=date, ) set_tag(data, 'sentry:release', release.version) if dist and release: dist = release.add_dist(dist, date) # dont allow a conflicting 'dist' tag pop_tag(data, 'dist') set_tag(data, 'sentry:dist', dist.name) else: dist = None event_user = self._get_event_user(project, data) if event_user: # dont allow a conflicting 'user' tag pop_tag(data, 'user') set_tag(data, 'sentry:user', event_user.tag_value) # At this point we want to normalize the in_app values in case the # clients did not set this appropriately so far. grouping_config = load_grouping_config( get_grouping_config_dict_for_event_data(data, project)) normalize_stacktraces_for_grouping(data, grouping_config) for plugin in plugins.for_project(project, version=None): added_tags = safe_execute(plugin.get_tags, event, _with_transaction=False) if added_tags: # plugins should not override user provided tags for key, value in added_tags: if get_tag(data, key) is None: set_tag(data, key, value) for path, iface in six.iteritems(event.interfaces): for k, v in iface.iter_tags(): set_tag(data, k, v) # Get rid of ephemeral interface data if iface.ephemeral: data.pop(iface.path, None) # The active grouping config was put into the event in the # normalize step before. We now also make sure that the # fingerprint was set to `'{{ default }}' just in case someone # removed it from the payload. The call to get_hashes will then # look at `grouping_config` to pick the right paramters. data['fingerprint'] = data.get('fingerprint') or ['{{ default }}'] apply_server_fingerprinting(data, get_fingerprinting_config_for_project(project)) hashes = event.get_hashes() data['hashes'] = hashes # we want to freeze not just the metadata and type in but also the # derived attributes. The reason for this is that we push this # data into kafka for snuba processing and our postprocessing # picks up the data right from the snuba topic. For most usage # however the data is dynamically overriden by Event.title and # Event.location (See Event.as_dict) materialized_metadata = self.materialize_metadata() event_metadata = materialized_metadata['metadata'] data.update(materialized_metadata) data['culprit'] = culprit # index components into ``Event.message`` # See GH-3248 event.message = self.get_search_message(event_metadata, culprit) received_timestamp = event.data.get('received') or float(event.datetime.strftime('%s')) # The group gets the same metadata as the event when it's flushed but # additionally the `last_received` key is set. This key is used by # _save_aggregate. group_metadata = dict(materialized_metadata) group_metadata['last_received'] = received_timestamp kwargs = { 'platform': platform, 'message': event.message, 'culprit': culprit, 'logger': logger_name, 'level': LOG_LEVELS_MAP.get(level), 'last_seen': date, 'first_seen': date, 'active_at': date, 'data': group_metadata, } if release: kwargs['first_release'] = release try: group, is_new, is_regression, is_sample = self._save_aggregate( event=event, hashes=hashes, release=release, **kwargs ) except HashDiscarded: event_discarded.send_robust( project=project, sender=EventManager, ) metrics.incr( 'events.discarded', skip_internal=True, tags={ 'organization_id': project.organization_id, 'platform': platform, }, ) raise else: event_saved.send_robust( project=project, event_size=event.size, sender=EventManager, ) event.group = group # store a reference to the group id to guarantee validation of isolation event.data.bind_ref(event) # When an event was sampled, the canonical source of truth # is the EventMapping table since we aren't going to be writing out an actual # Event row. Otherwise, if the Event isn't being sampled, we can safely # rely on the Event table itself as the source of truth and ignore # EventMapping since it's redundant information. if is_sample: try: with transaction.atomic(using=router.db_for_write(EventMapping)): EventMapping.objects.create(project=project, group=group, event_id=event_id) except IntegrityError: logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': EventMapping.__name__, } ) return event environment = Environment.get_or_create( project=project, name=environment, ) group_environment, is_new_group_environment = GroupEnvironment.get_or_create( group_id=group.id, environment_id=environment.id, defaults={ 'first_release': release if release else None, }, ) if release: ReleaseEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) ReleaseProjectEnvironment.get_or_create( project=project, release=release, environment=environment, datetime=date, ) grouprelease = GroupRelease.get_or_create( group=group, release=release, environment=environment, datetime=date, ) counters = [ (tsdb.models.group, group.id), (tsdb.models.project, project.id), ] if release: counters.append((tsdb.models.release, release.id)) tsdb.incr_multi(counters, timestamp=event.datetime, environment_id=environment.id) frequencies = [ # (tsdb.models.frequent_projects_by_organization, { # project.organization_id: { # project.id: 1, # }, # }), # (tsdb.models.frequent_issues_by_project, { # project.id: { # group.id: 1, # }, # }) (tsdb.models.frequent_environments_by_group, { group.id: { environment.id: 1, }, }) ] if release: frequencies.append( (tsdb.models.frequent_releases_by_group, { group.id: { grouprelease.id: 1, }, }) ) tsdb.record_frequency_multi(frequencies, timestamp=event.datetime) UserReport.objects.filter( project=project, event_id=event_id, ).update( group=group, environment=environment, ) # save the event unless its been sampled if not is_sample: try: with transaction.atomic(using=router.db_for_write(Event)): event.save() except IntegrityError: logger.info( 'duplicate.found', exc_info=True, extra={ 'event_uuid': event_id, 'project_id': project.id, 'group_id': group.id, 'model': Event.__name__, } ) return event tagstore.delay_index_event_tags( organization_id=project.organization_id, project_id=project.id, group_id=group.id, environment_id=environment.id, event_id=event.id, tags=event.tags, date_added=event.datetime, ) if event_user: tsdb.record_multi( ( (tsdb.models.users_affected_by_group, group.id, (event_user.tag_value, )), (tsdb.models.users_affected_by_project, project.id, (event_user.tag_value, )), ), timestamp=event.datetime, environment_id=environment.id, ) if release: if is_new: buffer.incr( ReleaseProject, {'new_groups': 1}, { 'release_id': release.id, 'project_id': project.id, } ) if is_new_group_environment: buffer.incr( ReleaseProjectEnvironment, {'new_issues_count': 1}, { 'project_id': project.id, 'release_id': release.id, 'environment_id': environment.id, } ) safe_execute( Group.objects.add_tags, group, environment, event.get_tags(), _with_transaction=False) if not raw: if not project.first_event: project.update(first_event=date) first_event_received.send_robust(project=project, group=group, sender=Project) eventstream.insert( group=group, event=event, is_new=is_new, is_sample=is_sample, is_regression=is_regression, is_new_group_environment=is_new_group_environment, primary_hash=hashes[0], # We are choosing to skip consuming the event back # in the eventstream if it's flagged as raw. # This means that we want to publish the event # through the event stream, but we don't care # about post processing and handling the commit. skip_consume=raw, ) metrics.timing( 'events.latency', received_timestamp - recorded_timestamp, tags={ 'project_id': project.id, }, ) metrics.timing( 'events.size.data.post_save', event.size, tags={'project_id': project.id} ) return event