def preprocess_midi(path): note_seq = NoteSeq.from_drum_midi_file(path)#get note note_seq.adjust_time(-note_seq.notes[0].start)# change offset of note seq event_seq = EventSeq.from_note_seq(note_seq) control_seq = ControlSeq.from_event_seq(event_seq) return event_seq.to_array(), control_seq.to_compressed_array()
def transposition(events, controls, offset=0): # events [steps, batch_size, event_dim] # return events, controls events = np.array(events, dtype=np.int64) controls = np.array(controls, dtype=np.float32) event_feat_ranges = EventSeq.feat_ranges() on = event_feat_ranges['note_on'] off = event_feat_ranges['note_off'] if offset > 0: indeces0 = (((on.start <= events) & (events < on.stop - offset)) | ((off.start <= events) & (events < off.stop - offset))) indeces1 = (((on.stop - offset <= events) & (events < on.stop)) | ((off.stop - offset <= events) & (events < off.stop))) events[indeces0] += offset events[indeces1] += offset - 12 elif offset < 0: indeces0 = (((on.start - offset <= events) & (events < on.stop)) | ((off.start - offset <= events) & (events < off.stop))) indeces1 = (((on.start <= events) & (events < on.start - offset)) | ((off.start <= events) & (events < off.start - offset))) events[indeces0] += offset events[indeces1] += offset + 12 assert ((0 <= events) & (events < EventSeq.dim())).all() histr = ControlSeq.feat_ranges()['pitch_histogram'] controls[:, :, histr.start:histr.stop] = np.roll( controls[:, :, histr.start:histr.stop], offset, -1) return events, controls
def main(_): model_path = os.path.join('./model/', FLAGS.name) if os.path.exists(model_path) is False: os.makedirs(model_path) if os.path.isdir(model_path): checkpoint_path =\ tf.train.latest_checkpoint(model_path) dataset = load_dataset() batch_gen = dataset.batches(FLAGS.num_seqs, FLAGS.num_steps, 10) print(EventSeq.dim()) model = CharRNN(EventSeq.dim(), ControlSeq.dim(), num_seqs=FLAGS.num_seqs, num_steps=FLAGS.num_steps, lstm_size=FLAGS.lstm_size, num_layers=FLAGS.num_layers, learning_rate=FLAGS.learning_rate, train_keep_prob=FLAGS.train_keep_prob, use_embedding=FLAGS.use_embedding, embedding_size=FLAGS.embedding_size) model.sess.run(tf.global_variables_initializer()) model.load(checkpoint_path) model.train( batch_gen, FLAGS.max_steps, model_path, FLAGS.save_every_n, FLAGS.log_every_n, )
def main(_): if os.path.isfile(FLAGS.control) or os.path.isdir(FLAGS.control): if os.path.isdir(FLAGS.control): files = list(utils.find_files_by_extensions(FLAGS.control)) assert len(files) > 0, 'no file in "{control}"'.format( control=FLAGS.control) control = np.random.choice(files) events, compressed_controls = torch.load(FLAGS.control) controls = ControlSeq.recover_compressed_array(compressed_controls) max_len = FLAGS.max_length if FLAGS.max_length == 0: max_len = controls.shape[0] control = np.expand_dims(controls, 1).repeat(1, 1) control = 'control sequence from "{control}"'.format(control=control) assert max_len > 0, 'either max length or control sequence length should be given' #FLAGS.start_string = FLAGS.start_string.decode('utf-8') if os.path.isdir(FLAGS.checkpoint_path): FLAGS.checkpoint_path =\ tf.train.latest_checkpoint(FLAGS.checkpoint_path) model = CharRNN(EventSeq.dim(), ControlSeq.dim(), sampling=True, lstm_size=FLAGS.lstm_size, num_layers=FLAGS.num_layers, use_embedding=FLAGS.use_embedding, embedding_size=FLAGS.embedding_size) model.sess.run(tf.global_variables_initializer()) model.load(FLAGS.checkpoint_path) outputs = model.sample(1000, prime=events[0:100], vocab_size=EventSeq.dim()) outputs = outputs.reshape([-1, 1]) print(outputs) name = 'output-{i:03d}.mid'.format(i=0) path = os.path.join("output/", name) n_notes = utils.event_indeces_to_midi_file(outputs[:, 0], path) print('===> {path} ({n_notes} notes)'.format(path=path, n_notes=n_notes))
def __init__(self, root, verbose=False): assert os.path.isdir(root), root paths = utils.find_files_by_extensions(root, ['.data']) self.root = root self.samples = [] self.seqlens = [] if verbose: paths = Bar(root).iter(list(paths)) for path in paths: eventseq, controlseq = torch.load(path) controlseq = ControlSeq.recover_compressed_array(controlseq) assert len(eventseq) == len(controlseq) self.samples.append((eventseq, controlseq)) self.seqlens.append(len(eventseq)) self.avglen = np.mean(self.seqlens)
def preprocess_midi(path): note_seq = NoteSeq.from_midi_file(path) note_seq.adjust_time(-note_seq.notes[0].start) event_seq = EventSeq.from_note_seq(note_seq) control_seq = ControlSeq.from_event_seq(event_seq) return event_seq.to_array(), control_seq.to_compressed_array()
sess_path = options.sess_path data_path = options.data_path saving_interval = options.saving_interval learning_rate = options.learning_rate batch_size = options.batch_size window_size = options.window_size stride_size = options.stride_size use_transposition = options.use_transposition control_ratio = options.control_ratio teacher_forcing_ratio = options.teacher_forcing_ratio reset_optimizer = options.reset_optimizer enable_logging = options.enable_logging event_dim = EventSeq.dim() control_dim = ControlSeq.dim() model_config = config.model model_params = utils.params2dict(options.model_params) model_config.update(model_params) device = config.device print('-' * 70) print('Session path:', sess_path) print('Dataset path:', data_path) print('Saving interval:', saving_interval) print('-' * 70) print('Hyperparameters:', utils.dict2params(model_config)) print('Learning rate:', learning_rate) print('Batch size:', batch_size)
if use_beam_search: greedy_ratio = 'DISABLED' else: beam_size = 'DISABLED' assert os.path.isfile(sess_path), f'"{sess_path}" is not a file' if control is not None: if os.path.isfile(control) or os.path.isdir(control): if os.path.isdir(control): files = list(utils.find_files_by_extensions(control)) assert len(files) > 0, f'no file in "{control}"' control = np.random.choice(files) _, compressed_controls = torch.load(control) controls = ControlSeq.recover_compressed_array(compressed_controls) if max_len == 0: max_len = controls.shape[0] controls = torch.tensor(controls, dtype=torch.float32) controls = controls.unsqueeze(1).repeat(1, batch_size, 1).to(device) control = f'control sequence from "{control}"' else: pitch_histogram, note_density = control.split(';') pitch_histogram = list(filter(len, pitch_histogram.split(','))) if len(pitch_histogram) == 0: pitch_histogram = np.ones(12) / 12 else: pitch_histogram = np.array(list(map(float, pitch_histogram))) assert pitch_histogram.size == 12 assert np.all(pitch_histogram >= 0)
import torch from sequence import EventSeq, ControlSeq #pylint: disable=E1101 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = { 'init_dim': 32, 'event_dim': EventSeq.dim(), 'control_dim': ControlSeq.dim(), 'hidden_dim': 512, 'gru_layers': 3, 'gru_dropout': 0.3, } train = { 'learning_rate': 0.001, 'batch_size': 64, 'window_size': 200, 'stride_size': 10, 'use_transposition': False, 'control_ratio': 1.0, 'teacher_forcing_ratio': 1.0 }