Example #1
0
def preprocess_midi(path):
    note_seq = NoteSeq.from_drum_midi_file(path)#get note
    note_seq.adjust_time(-note_seq.notes[0].start)# change offset of note seq
    event_seq = EventSeq.from_note_seq(note_seq)

    control_seq = ControlSeq.from_event_seq(event_seq)
    return event_seq.to_array(), control_seq.to_compressed_array()
Example #2
0
def transposition(events, controls, offset=0):
    # events [steps, batch_size, event_dim]
    # return events, controls

    events = np.array(events, dtype=np.int64)
    controls = np.array(controls, dtype=np.float32)
    event_feat_ranges = EventSeq.feat_ranges()

    on = event_feat_ranges['note_on']
    off = event_feat_ranges['note_off']

    if offset > 0:
        indeces0 = (((on.start <= events) & (events < on.stop - offset)) |
                    ((off.start <= events) & (events < off.stop - offset)))
        indeces1 = (((on.stop - offset <= events) & (events < on.stop)) |
                    ((off.stop - offset <= events) & (events < off.stop)))
        events[indeces0] += offset
        events[indeces1] += offset - 12
    elif offset < 0:
        indeces0 = (((on.start - offset <= events) & (events < on.stop)) |
                    ((off.start - offset <= events) & (events < off.stop)))
        indeces1 = (((on.start <= events) & (events < on.start - offset)) |
                    ((off.start <= events) & (events < off.start - offset)))
        events[indeces0] += offset
        events[indeces1] += offset + 12

    assert ((0 <= events) & (events < EventSeq.dim())).all()
    histr = ControlSeq.feat_ranges()['pitch_histogram']
    controls[:, :, histr.start:histr.stop] = np.roll(
        controls[:, :, histr.start:histr.stop], offset, -1)

    return events, controls
Example #3
0
def main(_):
    model_path = os.path.join('./model/', FLAGS.name)
    if os.path.exists(model_path) is False:
        os.makedirs(model_path)
    if os.path.isdir(model_path):
        checkpoint_path =\
            tf.train.latest_checkpoint(model_path)

    dataset = load_dataset()
    batch_gen = dataset.batches(FLAGS.num_seqs, FLAGS.num_steps, 10)
    print(EventSeq.dim())
    model = CharRNN(EventSeq.dim(),
                    ControlSeq.dim(),
                    num_seqs=FLAGS.num_seqs,
                    num_steps=FLAGS.num_steps,
                    lstm_size=FLAGS.lstm_size,
                    num_layers=FLAGS.num_layers,
                    learning_rate=FLAGS.learning_rate,
                    train_keep_prob=FLAGS.train_keep_prob,
                    use_embedding=FLAGS.use_embedding,
                    embedding_size=FLAGS.embedding_size)
    model.sess.run(tf.global_variables_initializer())
    model.load(checkpoint_path)

    model.train(
        batch_gen,
        FLAGS.max_steps,
        model_path,
        FLAGS.save_every_n,
        FLAGS.log_every_n,
    )
Example #4
0
def main(_):
    if os.path.isfile(FLAGS.control) or os.path.isdir(FLAGS.control):
        if os.path.isdir(FLAGS.control):
            files = list(utils.find_files_by_extensions(FLAGS.control))
            assert len(files) > 0, 'no file in "{control}"'.format(
                control=FLAGS.control)
            control = np.random.choice(files)
        events, compressed_controls = torch.load(FLAGS.control)
        controls = ControlSeq.recover_compressed_array(compressed_controls)
        max_len = FLAGS.max_length
        if FLAGS.max_length == 0:
            max_len = controls.shape[0]

        control = np.expand_dims(controls, 1).repeat(1, 1)
        control = 'control sequence from "{control}"'.format(control=control)

    assert max_len > 0, 'either max length or control sequence length should be given'

    #FLAGS.start_string = FLAGS.start_string.decode('utf-8')

    if os.path.isdir(FLAGS.checkpoint_path):
        FLAGS.checkpoint_path =\
            tf.train.latest_checkpoint(FLAGS.checkpoint_path)

    model = CharRNN(EventSeq.dim(),
                    ControlSeq.dim(),
                    sampling=True,
                    lstm_size=FLAGS.lstm_size,
                    num_layers=FLAGS.num_layers,
                    use_embedding=FLAGS.use_embedding,
                    embedding_size=FLAGS.embedding_size)
    model.sess.run(tf.global_variables_initializer())
    model.load(FLAGS.checkpoint_path)

    outputs = model.sample(1000,
                           prime=events[0:100],
                           vocab_size=EventSeq.dim())

    outputs = outputs.reshape([-1, 1])
    print(outputs)
    name = 'output-{i:03d}.mid'.format(i=0)
    path = os.path.join("output/", name)
    n_notes = utils.event_indeces_to_midi_file(outputs[:, 0], path)
    print('===> {path} ({n_notes} notes)'.format(path=path, n_notes=n_notes))
Example #5
0
 def __init__(self, root, verbose=False):
     assert os.path.isdir(root), root
     paths = utils.find_files_by_extensions(root, ['.data'])
     self.root = root
     self.samples = []
     self.seqlens = []
     if verbose:
         paths = Bar(root).iter(list(paths))
     for path in paths:
         eventseq, controlseq = torch.load(path)
         controlseq = ControlSeq.recover_compressed_array(controlseq)
         assert len(eventseq) == len(controlseq)
         self.samples.append((eventseq, controlseq))
         self.seqlens.append(len(eventseq))
     self.avglen = np.mean(self.seqlens)
Example #6
0
def preprocess_midi(path):
    note_seq = NoteSeq.from_midi_file(path)
    note_seq.adjust_time(-note_seq.notes[0].start)
    event_seq = EventSeq.from_note_seq(note_seq)
    control_seq = ControlSeq.from_event_seq(event_seq)
    return event_seq.to_array(), control_seq.to_compressed_array()
Example #7
0
sess_path = options.sess_path
data_path = options.data_path
saving_interval = options.saving_interval

learning_rate = options.learning_rate
batch_size = options.batch_size
window_size = options.window_size
stride_size = options.stride_size
use_transposition = options.use_transposition
control_ratio = options.control_ratio
teacher_forcing_ratio = options.teacher_forcing_ratio
reset_optimizer = options.reset_optimizer
enable_logging = options.enable_logging

event_dim = EventSeq.dim()
control_dim = ControlSeq.dim()
model_config = config.model
model_params = utils.params2dict(options.model_params)
model_config.update(model_params)
device = config.device

print('-' * 70)

print('Session path:', sess_path)
print('Dataset path:', data_path)
print('Saving interval:', saving_interval)
print('-' * 70)

print('Hyperparameters:', utils.dict2params(model_config))
print('Learning rate:', learning_rate)
print('Batch size:', batch_size)
if use_beam_search:
    greedy_ratio = 'DISABLED'
else:
    beam_size = 'DISABLED'

assert os.path.isfile(sess_path), f'"{sess_path}" is not a file'

if control is not None:
    if os.path.isfile(control) or os.path.isdir(control):
        if os.path.isdir(control):
            files = list(utils.find_files_by_extensions(control))
            assert len(files) > 0, f'no file in "{control}"'
            control = np.random.choice(files)
        _, compressed_controls = torch.load(control)
        controls = ControlSeq.recover_compressed_array(compressed_controls)
        if max_len == 0:
            max_len = controls.shape[0]
        controls = torch.tensor(controls, dtype=torch.float32)
        controls = controls.unsqueeze(1).repeat(1, batch_size, 1).to(device)
        control = f'control sequence from "{control}"'

    else:
        pitch_histogram, note_density = control.split(';')
        pitch_histogram = list(filter(len, pitch_histogram.split(',')))
        if len(pitch_histogram) == 0:
            pitch_histogram = np.ones(12) / 12
        else:
            pitch_histogram = np.array(list(map(float, pitch_histogram)))
            assert pitch_histogram.size == 12
            assert np.all(pitch_histogram >= 0)
Example #9
0
import torch
from sequence import EventSeq, ControlSeq

#pylint: disable=E1101

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = {
    'init_dim': 32,
    'event_dim': EventSeq.dim(),
    'control_dim': ControlSeq.dim(),
    'hidden_dim': 512,
    'gru_layers': 3,
    'gru_dropout': 0.3,
}

train = {
    'learning_rate': 0.001,    
    'batch_size': 64,
    'window_size': 200,
    'stride_size': 10,
    'use_transposition': False,
    'control_ratio': 1.0,
    'teacher_forcing_ratio': 1.0
}