Example #1
0
def transposition(events, controls, offset=0):
    # events [steps, batch_size, event_dim]
    # return events, controls

    events = np.array(events, dtype=np.int64)
    controls = np.array(controls, dtype=np.float32)
    event_feat_ranges = EventSeq.feat_ranges()

    on = event_feat_ranges['note_on']
    off = event_feat_ranges['note_off']

    if offset > 0:
        indeces0 = (((on.start <= events) & (events < on.stop - offset)) |
                    ((off.start <= events) & (events < off.stop - offset)))
        indeces1 = (((on.stop - offset <= events) & (events < on.stop)) |
                    ((off.stop - offset <= events) & (events < off.stop)))
        events[indeces0] += offset
        events[indeces1] += offset - 12
    elif offset < 0:
        indeces0 = (((on.start - offset <= events) & (events < on.stop)) |
                    ((off.start - offset <= events) & (events < off.stop)))
        indeces1 = (((on.start <= events) & (events < on.start - offset)) |
                    ((off.start <= events) & (events < off.start - offset)))
        events[indeces0] += offset
        events[indeces1] += offset + 12

    assert ((0 <= events) & (events < EventSeq.dim())).all()
    histr = ControlSeq.feat_ranges()['pitch_histogram']
    controls[:, :, histr.start:histr.stop] = np.roll(
        controls[:, :, histr.start:histr.stop], offset, -1)

    return events, controls
                    cnt_dict['index-' + str(index)] = 1
        return cnt_arr

    print(par.vocab_size)
    data = Data('dataset/processed')
    # ds = DataSequence('dataset/processed', 10, 2048)
    sample = data.seq2seq_batch(1000, 100)[0]
    pprint.pprint(list(sample))
    arr = count_dict(par.vocab_size + 3, sample)
    pprint.pprint(arr)

    from sequence import EventSeq, Event

    event_cnt = {'note_on': 0, 'note_off': 0, 'velocity': 0, 'time_shift': 0}
    for event_index in range(len(arr)):
        for event_type, feat_range in EventSeq.feat_ranges().items():

            if feat_range.start <= event_index < feat_range.stop:
                print(event_type + ':' + str(arr[event_index]) +
                      ' event cnt: ' + str(event_cnt))
                event_cnt[event_type] += arr[event_index]

                # event_value = event_index - feat_range.start
                # events.append(Event(event_type, time, event_value))
                # if event_type == 'time_shift':
                #     time += EventSeq.time_shift_bins[event_value]
                # break
    print(event_cnt)

    # print(np.max(sample), np.min(sample))
    # print([data._get_seq(file).shape for file in data.files])