Example #1
0
    def layout_to_fbs_matrix(self, fields):
        """
        return specified embeddings as a flatbuffer, using the cellxgene matrix fbs encoding.

        * returns only first two dimensions, with name {ename}_0 and {ename}_1,
          where {ename} is the embedding name.
        * client assumes each will be individually centered & scaled (isotropically)
          to a [0, 1] range.
        * does not support filtering

        """
        embeddings = self.get_embedding_names(
        ) if fields is None or len(fields) == 0 else fields
        layout_data = []
        with ServerTiming.time("layout.query"):
            for ename in embeddings:
                embedding = self.get_embedding_array(ename, 2)
                normalized_layout = DataAdaptor.normalize_embedding(embedding)
                layout_data.append(
                    pd.DataFrame(normalized_layout,
                                 columns=[f"{ename}_0", f"{ename}_1"]))

        with ServerTiming.time("layout.encode"):
            if layout_data:
                df = pd.concat(layout_data, axis=1, copy=False)
            else:
                df = pd.DataFrame()
            fbs = encode_matrix_fbs(df, col_idx=df.columns, row_idx=None)

        return fbs
Example #2
0
    def test_type_conversion_consistency(self):
        self.assertEqual(self.dataframe.shape[1], len(self.expected_fbs_types))
        self.assertEqual(self.dataframe.shape[1],
                         len(self.expected_schema_hints))

        buf = encode_matrix_fbs(matrix=self.dataframe,
                                col_idx=self.dataframe.columns)
        encoding_dtypes, schema_hints = get_dtypes_and_schemas_of_dataframe(
            self.dataframe)

        # check schema hints
        # print(schema_hints)
        # print(self.expected_schema_hints)
        self.assertEqual(schema_hints, self.expected_schema_hints)

        # inspect the FBS types
        matrix = fbs.NetEncoding.Matrix.Matrix.GetRootAsMatrix(buf, 0)
        columns_length = matrix.ColumnsLength()
        self.assertEqual(columns_length, self.dataframe.shape[1])

        self.assertEqual(
            matrix.ColIndexType(),
            fbs.NetEncoding.TypedArray.TypedArray.JSONEncodedArray)
        col_labels_arr = fbs.NetEncoding.JSONEncodedArray.JSONEncodedArray()
        col_labels_arr.Init(matrix.ColIndex().Bytes, matrix.ColIndex().Pos)
        col_index_labels = json.loads(
            col_labels_arr.DataAsNumpy().tobytes().decode("utf-8"))
        self.assertEqual(len(col_index_labels), self.dataframe.shape[1])

        for col_idx in range(0, columns_length):
            col_label = col_index_labels[col_idx]
            col = matrix.Columns(col_idx)
            col_type = col.UType()
            self.assertEqual(self.expected_fbs_types[col_label], col_type)
Example #3
0
    def data_frame_to_fbs_matrix(self, filter, axis):
        """
        Retrieves data 'X' and returns in a flatbuffer Matrix.
        :param filter: filter: dictionary with filter params
        :param axis: string obs or var
        :return: flatbuffer Matrix

        Caveats:
        * currently only supports access on VAR axis
        * currently only supports filtering on VAR axis
        """
        if axis != Axis.VAR:
            raise ValueError("Only VAR dimension access is supported")

        try:
            obs_selector, var_selector = self._filter_to_mask(filter)
        except (KeyError, IndexError, TypeError, AttributeError):
            raise FilterError("Error parsing filter")

        if obs_selector is not None:
            raise FilterError("filtering on obs unsupported")

        num_columns = self.get_shape(
        )[1] if var_selector is None else np.count_nonzero(var_selector)
        if self.server_config.exceeds_limit("column_request_max", num_columns):
            raise ExceedsLimitError(
                "Requested dataframe columns exceed column request limit")

        X = self.get_X_array(obs_selector, var_selector)
        col_idx = np.nonzero([] if var_selector is None else var_selector)[0]
        return encode_matrix_fbs(X, col_idx=col_idx, row_idx=None)
Example #4
0
    def annotation_to_fbs_matrix(self, axis, fields=None, labels=None):
        if axis == Axis.OBS:
            if labels is not None and not labels.empty:
                df = self.data.obs.join(labels,
                                        self.parameters.get("obs_names"))
            else:
                df = self.data.obs
        else:
            df = self.data.var

        if fields is not None and len(fields) > 0:
            df = df[fields]
        return encode_matrix_fbs(df, col_idx=df.columns)
Example #5
0
 def test_encode_DataFrame(self):
     df = pd.DataFrame(
         data={
             "a":
             np.zeros((10, ), dtype=np.float32),
             "b":
             np.ones((10, ), dtype=np.int64),
             "c":
             np.array([i for i in range(0, 10)], dtype=np.uint16),
             "d":
             pd.Series(["x", "y", "z", "x", "y", "z", "a", "x", "y", "z"],
                       dtype="category"),
         })
     expected_types = ((np.ndarray, np.float32), (np.ndarray, np.int32),
                       (np.ndarray, np.int32), (list, None))
     fbs = encode_matrix_fbs(matrix=df, row_idx=None, col_idx=df.columns)
     self.fbs_checks(fbs, (10, 4), expected_types, ["a", "b", "c", "d"])
Example #6
0
    def test_encode_boundary(self):
        """test various boundary checks"""

        # row indexing is unsupported
        with self.assertRaises(ValueError):
            encode_matrix_fbs(matrix=pd.DataFrame(), row_idx=[])

        # matrix must be 2D
        with self.assertRaises(ValueError):
            encode_matrix_fbs(matrix=np.zeros((3, 2, 1)))
        with self.assertRaises(ValueError):
            encode_matrix_fbs(matrix=np.ones((10, )))
Example #7
0
    def summarize_var(self, method, filter, query_hash):
        if method != "mean":
            raise UnsupportedSummaryMethod("Unknown gene set summary method.")

        obs_selector, var_selector = self._filter_to_mask(filter)
        if obs_selector is not None:
            raise FilterError("filtering on obs unsupported")

        # if no filter, just return zeros.  We don't have a use case
        # for summarizing the entire X without a filter, and it would
        # potentially be quite compute / memory intensive.
        if var_selector is None or np.count_nonzero(var_selector) == 0:
            mean = np.zeros((self.get_shape()[0], 1), dtype=np.float32)
        else:
            X = self.get_X_array(obs_selector, var_selector)
            if sparse.issparse(X):
                mean = X.mean(axis=1).A
            else:
                mean = X.mean(axis=1, keepdims=True)

        col_idx = pd.Index([query_hash])
        return encode_matrix_fbs(mean, col_idx=col_idx, row_idx=None)
Example #8
0
 def test_roundtrip(self):
     dfSrc = pd.DataFrame(
         data={
             "a":
             np.zeros((10, ), dtype=np.float32),
             "b":
             np.ones((10, ), dtype=np.int64),
             "c":
             np.array([i for i in range(0, 10)], dtype=np.uint16),
             "d":
             pd.Series(["x", "y", "z", "x", "y", "z", "a", "x", "y", "z"],
                       dtype="category"),
         })
     dfDst = decode_matrix_fbs(
         encode_matrix_fbs(matrix=dfSrc, col_idx=dfSrc.columns))
     self.assertEqual(dfSrc.shape, dfDst.shape)
     self.assertEqual(set(dfSrc.columns), set(dfDst.columns))
     for c in dfSrc.columns:
         self.assertTrue(c in dfDst.columns)
         if isinstance(dfSrc[c], pd.Series):
             self.assertTrue(np.all(dfSrc[c] == dfDst[c]))
         else:
             self.assertEqual(dfSrc[c], dfDst[c])
Example #9
0
 def test_encode_sparse(self):
     csc = sparse.csc_matrix(np.array([[0, 1, 2], [3, 0, 4]]))
     expected_types = ((np.ndarray, np.int32), (np.ndarray, np.int32),
                       (np.ndarray, np.int32))
     fbs = encode_matrix_fbs(matrix=csc, row_idx=None, col_idx=None)
     self.fbs_checks(fbs, (2, 3), expected_types, None)
Example #10
0
 def test_encode_ndarray(self):
     arr = np.zeros((3, 2), dtype=np.float32)
     expected_types = ((np.ndarray, np.float32), (np.ndarray, np.float32),
                       (np.ndarray, np.float32))
     fbs = encode_matrix_fbs(matrix=arr, row_idx=None, col_idx=None)
     self.fbs_checks(fbs, (3, 2), expected_types, None)
Example #11
0
def make_fbs(data):
    df = pd.DataFrame(data)
    return encode_matrix_fbs(matrix=df, row_idx=None, col_idx=df.columns)