def concatenate_query_and_dates(start_date, end_date):
    date_query = u""
    if start_date:
        testa = datetime.datetime.strptime(start_date, u'%Y-%m-%d').date()
        testb = datetime.datetime.strptime(end_date, u'%Y-%m-%d').date()
        date_query = mc.publish_date_query(testa, testb, True, True)
    return date_query
def split_story_count(user_mc_key, q='*', last_n_days=None):
    start_date = None
    end_date = None
    if last_n_days is not None:
        start_date = datetime.datetime.today() - datetime.timedelta(
            last_n_days)
        end_date = YESTERDAY
        fq = mc.publish_date_query(start_date, end_date, True, True)
    else:
        fq = None
    results = _cached_split_story_counts(q, fq)
    if last_n_days is None:
        if len(results['counts']) > 0:
            # if we are getting ALL stories, make sure bad dates don't give us super old / future ones
            start_date = max(
                MC_START_DATE,
                datetime.datetime.strptime(results['counts'][0]['date'],
                                           mc.SENTENCE_PUBLISH_DATE_FORMAT))
            end_date = min(
                YESTERDAY,
                datetime.datetime.strptime(results['counts'][-1]['date'],
                                           mc.SENTENCE_PUBLISH_DATE_FORMAT))
    results['counts'] = add_missing_dates_to_split_story_counts(
        results['counts'], start_date, end_date)
    results['total_story_count'] = sum([r['count'] for r in results['counts']])
    return results
Example #3
0
def concatenate_query_and_dates(start_date, end_date):
    date_query = ""
    if start_date:
        testa = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
        testb = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
        date_query = mc.publish_date_query(testa, testb, True, True)
    return date_query
def dates_as_filter_query(start_date, end_date):
    date_query = ""
    if start_date:
        testa = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
        testb = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
        date_query = mc.publish_date_query(testa, testb, True, True)
    return date_query
def _cached_featured_collections():
    featured_collections = []
    for tags_id in FEATURED_COLLECTION_LIST:
        coll = mc.tag(tags_id)
        coll['id'] = tags_id
        source_count_estimate = _cached_media_with_tag_page(tags_id, 0)
        coll['media_count'] = len(source_count_estimate)

        how_lively_is_this_collection = 0
        # story count
        for media in source_count_estimate:
            one_weeks_before_now = datetime.datetime.now() - datetime.timedelta(days=7)
            start_date = one_weeks_before_now
            end_date = datetime.datetime.now()
            publish_date = mc.publish_date_query(start_date,
                                              end_date,
                                              True, True)
            media_query = "(media_id:{})".format(media['media_id']) + " AND (+" + publish_date + ")"

            how_lively_is_this_collection += _cached_source_story_count(user_mediacloud_key(), media_query)
            # approximate liveliness - if there are more stories than 100, we know this is a reasonably active source/collection
            if how_lively_is_this_collection > 100:
                break
        coll['story_count'] = how_lively_is_this_collection
        featured_collections.append(coll)

    return featured_collections
def concatenate_query_and_dates(start_date, end_date):

    testa = datetime.datetime.strptime(start_date, '%Y-%m-%d').date()
    testb = datetime.datetime.strptime(end_date, '%Y-%m-%d').date()
    publish_date = mc.publish_date_query(testa, testb, True, True)

    return publish_date