def start_training(): """Starts the training asynchronously using the flask executor It runs the training based on the DSI_EXECUTE_ON environment variable and at the end, removes the future from the executor """ logging.getLogger(__name__).info("Training execution started...") # noinspection PyBroadException try: environment = execution_environment() if environment == DSI_EXECUTE_ON_LOCAL: if dvc_remote(): train(dvc_data_repo=dvc_remote(), dvc_ssh_user=ssh_username(), dvc_ssh_password=ssh_password()) else: train() elif environment == DSI_EXECUTE_ON_SSH: connection = SSHRemoteExecutor(host=ssh_host(), username=ssh_username(), password=ssh_password(), debug_mode=debug_mode() or flask_args.debug, port=ssh_port(), dvc_remote=dvc_remote()) connection.setup_prerequisites() connection.run_training() connection.save_model_locally() else: raise Exception("{0} has a unknown value '{1}'".format( DSI_EXECUTE_ON, environment)) logging.getLogger(__name__).info("Training execution ended!!!") except Exception as training_exc: # This exception is broad because we cannot forseen all possible exceptions in # the DS train code. # Also, since this train is beeing executed in a separed thread all exceptions # should be catched logging.getLogger(__name__).info( "Training execution raised an exception...") f = io.StringIO() traceback.print_exc(file=f) f.seek(0) logging.getLogger(__name__).error(f.read()) raise ValueError(training_exc)
def initialize_logging(path, debug=debug_mode(), remote=False) -> None: """Initializes the python's logging factory with a console and a file log handler for all log messages Parameters ---------- path: str Path where the logging.FileHandler should save the log messages debug: bool Changes the log level from INFO to DEBUG remote: bool If trues adds a 'REMOTE' to all log messages. Should be true only on the remote executable scripts. Warnings -------- remote: Should be true only on the remote executable scripts. """ global log_path log_path = path log_formatter = logging.Formatter( "{0}%(asctime)s [%(name)-15.15s] [%(levelname)-5.5s] %(message)s".format( "|REMOTE| " if remote else "") ) root_logger = logging.getLogger() root_logger.setLevel(logging.DEBUG if debug else logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter(log_formatter) console_handler.setLevel(logging.DEBUG if debug else logging.INFO) root_logger.addHandler(console_handler) file_handler = logging.FileHandler(path) file_handler.setFormatter(log_formatter) file_handler.setLevel(logging.DEBUG) file_handler.addFilter(FileHandlerFilter()) root_logger.addHandler(file_handler)
parser = argparse.ArgumentParser( description="Training model and saving it") parser.add_argument("--port", "-p", required=False, default=8080, type=int, help="Port number for the Flask server") parser.add_argument("--debug", "-d", action="store_true", help="Enables debug mode in the Flask server") parser.add_argument( "--local", "-l", required=False, default=False, type=bool, help="setting dummy user name and password for local development") flask_args = parser.parse_args() initialize_logging("prediction.log") if flask_args.local: username = "******" password = "******" app.config['USERS'][username] = password app.run('0.0.0.0', flask_args.port, debug=debug_mode() or flask_args.debug)
def filter(self, record: logging.LogRecord) -> bool: return not record.name.startswith(('flask', 'werkzeug')) or debug_mode()