def challenge_46(): print() # Get message, create RSA keypair, generate ciphertext message = base64.b64decode('VGhhdCdzIHdoeSBJIGZvdW5kIHlvdSBkb24ndCBwbGF5IGFyb3VuZCB3aXRoIHRoZSBGdW5reSBDb2xkIE1lZGluYQ==') pub, priv = set5.set_up_rsa(e=3, keysize=1024) ciphertext = set5.encrypt_rsa(set5.bytes_to_int(message), pub) # Set up our Oracle oracle = lambda x: rsa_oracle_plaintext_even(x, priv) # Verify the keypair works assert set5.int_to_bytes(set5.encrypt_rsa(ciphertext, priv)) == message # Set initial lower and upper bound, as well as intermediate ciphertext lower_bound, upper_bound = 0, pub[1] ciphertext_ = ciphertext # Perform the below until the lower and upper bound converge while upper_bound != lower_bound: # Multiply plaintext by multiplying ciphertext by 2**`e` mod `N` ciphertext_ = (ciphertext_ * set5.modexp(2, pub[0], pub[1])) % pub[1] # If the oracle says True, update the upper bound; if False, update the lower bound if oracle(ciphertext_): upper_bound = floor(upper_bound + lower_bound, 2) else: lower_bound = floor(upper_bound + lower_bound, 2) # Create 'Holywood style' output intermediate_result = str(set5.int_to_bytes(upper_bound))[:os.get_terminal_size().columns - 1] fill = " " * (os.get_terminal_size().columns - 1 - len(intermediate_result)) print(colorama.Cursor.UP(1) + intermediate_result + fill) # Print final outputs print(colorama.Cursor.UP(1) + "Result: {}".format(set5.int_to_bytes(upper_bound))) print("Original: {}".format(message))
def challenge_48(): # Set up new RSA instance, this time with bigger key length pub, priv = set5.set_up_rsa(e=3, keysize=768) # Prepare message message = pad_PKCS(b'I don\'t know, Marge. Trying is the first step towards failure - Homer Simpson', k=(pub[1].bit_length() + 7) // 8) # Get ciphertext using generated RSA instance ciphertext = set5.encrypt_rsa(set5.bytes_to_int(message), pub) # Set up our Oracle oracle = lambda x: rsa_oracle_02(x, priv) assert oracle(ciphertext) # Perform the actual attack: set up bleichenbacher98 instance bb98 = bleichenbacher98(ciphertext, pub, oracle) # Run the attack found_message = bb98.solve() print("Found message:", found_message) # Verify the found message equals our original plaintext assert_true(found_message == message)
def challenge_47(): # Set up new RSA instance pub, priv = set5.set_up_rsa(e=3, keysize=256) # Prepare message message = pad_PKCS(b'kick it, CC', k=(pub[1].bit_length() + 7) // 8) # Get ciphertext using generated RSA instance ciphertext = set5.encrypt_rsa(set5.bytes_to_int(message), pub) # Set up our Oracle oracle = lambda x: rsa_oracle_02(x, priv) assert oracle(ciphertext) # Perform the actual attack: set up bleichenbacher98 instance bb98 = bleichenbacher98(ciphertext, pub, oracle) # Run the attack found_message = bb98.solve() print("Found message:", found_message) # Verify the found message equals our original plaintext assert_true(found_message == message)
def challenge_42(): # Create new RSA Sign/Verify instance m = RsaSignVerify() print('> Signed message') # Part 1: try to verify a valid signature signature = m.sign(b'Hello world') assert m.verify(b'Hello world', signature) # Part 2: forge a signature print('\n> Forged message') # Find digest for message to forge forged_message = b'hi mom' digest = hashlib.sha1(forged_message).digest() # Set the contents of the (fake) message to forge fake_message = b'\x00\x01\xff\x00' + digest fake_message = set5.bytes_to_int(fake_message + (b'\x00' * (128 - len(fake_message)))) # The actual trick: find the cube root fake_signed_message = cuberoot(fake_message) # Check that the forged message passes verification assert_true(m.verify(forged_message, fake_signed_message))
def sign(self, msg): digest = hashlib.sha1(msg).digest() sgn = set5.bytes_to_int(b'\x00\x01' + (b'\xff' * (128 - len(digest) - 3)) + b'\x00' + digest) if sgn > self.public[1]: raise ValueError("Message to big for public key") return set5.encrypt_rsa(sgn, self.__private__)