def run(filename): """실험할 세팅을 불러오고, 그에 따라서 실험을 수행한다.""" info = TrainInformation(filename) np.random.seed(info.SEED) torch.manual_seed(info.SEED) fold = info.FOLD test_AUCs_by_split = [] for split in range(fold): #if split % 3 > 0: # print("Skipping split %d" % split) # continue if False: train_logisticregressoin(info, split, fold) continue result = train(info, split, fold) test_AUCs = [float(auc) for auc in result.test_AUC_list] test_AUCs_by_split.append(test_AUCs) with open("result.txt", "a") as f: test_AUCs_by_split = np.array(test_AUCs_by_split) test_AUCs_by_epoch = test_AUCs_by_split.mean(axis=0) best_test_epoch = np.argmax(test_AUCs_by_epoch) best_test_AUC = test_AUCs_by_epoch[best_test_epoch] #f.write(str(info) + "/n") f.write("Name: %s\n" % info.NAME) f.write("average test AUC: %f %d\n" % (best_test_AUC, best_test_epoch))
def train(info: TrainInformation, split, fold): """주어진 split에 대한 학습과 테스트를 진행한다.""" bs = info.BS init_lr = info.INIT_LR lr_decay = info.LR_DECAY momentum = info.MOMENTUM weight_decay = info.WEIGHT_DECAY optimizer_method = info.OPTIMIZER_METHOD epoch = info.EPOCH nchs = info.NCHS filename = info.FILENAME model_name = info.MODEL_NAME exp_name = info.NAME print("Using File {}".format(filename)) train_dataset = Dataset(split=split, fold=fold, phase="train", filename=filename, use_data_dropout=info.USE_DATA_DROPOUT) #val_dataset = Dataset(split=split, fold=fold, phase="val", filename=filename) test_dataset = Dataset(split=split, fold=fold, phase="test", filename=filename, use_data_dropout=False) model = get_classifier_model(model_name, train_dataset.feature_size, nchs, info.ACTIVATION) print(model) # Optimizer 설정 optimizer = set_optimizer( optimizer_method, model, init_lr, weight_decay, momentum=momentum ) data_loader = torch.utils.data.DataLoader( train_dataset, batch_size=bs, shuffle=True, num_workers=0, drop_last=True ) bce_loss = torch.nn.BCEWithLogitsLoss().cuda() train_result = TrainResult() train_result.set_sizes( len(train_dataset.data), 0, len(test_dataset.data) ) for ep in range(epoch): global prev_plot prev_plot = 0 train_step( exp_name, ep, model, train_dataset, test_dataset, optimizer, init_lr, lr_decay, data_loader, bce_loss, train_result, ) savedir = "/content/drive/My Drive/research/frontiers/checkpoints/%s" % exp_name best_test_epoch = train_result.best_test_epoch #25 savepath = "%s/epoch_%04d_fold_%02d.pt" % (savedir, best_test_epoch, train_dataset.split) #model.load_state_dict(torch.load(savepath)) model = torch.load(savepath) model.eval() test_preds = train_utils.get_preds(test_dataset.data[:, 1:], model) test_AUC = train_utils.compute_AUC(test_dataset.data[:, :1], test_preds) test_PRAUC = train_utils.compute_PRAUC(test_dataset.data[:, :1], test_preds) train_utils.plot_AUC(test_dataset, test_preds, test_AUC, savepath=savepath.replace(".pt", "_AUC.tiff")) contributing_variables = compute_contributing_variables(model, test_dataset) with open(os.path.join(savedir, "contributing_variables_epoch_%04d_fold_%02d.txt" % (best_test_epoch, train_dataset.split)), "w") as f: for (v, auc) in contributing_variables: f.write("%s %f\n" % (v, auc)) info.split_index = split info.result_dict = train_result info.save_result() return train_result