def evalValAndDeriv(D): m = Material('m', D = D, rho = 2700.0) integral = Integral('i', order=2) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations = lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM') eigs = eigs0[3:] evecs = evecs0[:, 3:] dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])]) dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])]) return eigs, dydmu, dydlambda
def assemble(mtx_d): m = Material('m', D=mtx_d, rho=density) integral = Integral('i', order=2 * order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() tmp = time.time() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) return mtx_k, mtx_m
def solveLaplaceEquationTetrahedral(mesh, meshVTK, boundaryPoints, boundaryConditions): """ mesh: path to a 3D mesh / sfepy mesh """ if isinstance(mesh, str): mesh = Mesh.from_file(mesh) #Set domains domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') boundary = domain.create_region( 'gamma', 'vertex %s' % ','.join(map(str, range(meshVTK.GetNumberOfPoints()))), 'facet') #set fields field = Field.from_args('fu', np.float64, 1, omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', val=[1.]) #Define element integrals integral = Integral('i', order=3) #Equations defining t1 = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u) eq = Equation('balance', t1) eqs = Equations([eq]) heatBoundary = boundaryConditions points = boundaryPoints #Boundary conditions c = ClosestPointStupid(points, heatBoundary, meshVTK) def u_fun(ts, coors, bc=None, problem=None, c=c): c.distances = [] v = np.zeros(len(coors)) for i, p in enumerate(coors): v[i] = c.interpolate(p) #c.findClosestPoint(p) return v bc_fun = Function('u_fun', u_fun) fix1 = EssentialBC('fix_u', boundary, {'u.all': bc_fun}) #Solve problem ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([fix1])) pb.set_solver(nls) state = pb.solve(verbose=False, save_results=False) u = state.get_parts()['u'] return u
def test_solving(self): from sfepy.base.base import IndexedStruct from sfepy.discrete import (FieldVariable, Material, Problem, Function, Equation, Equations, Integral) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.mechanics.matcoefs import stiffness_from_lame u = FieldVariable('u', 'unknown', self.field) v = FieldVariable('v', 'test', self.field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0)) f = Material('f', val=[[0.02], [0.01]]) bc_fun = Function('fix_u_fun', fix_u_fun, extra_args={'extra_arg' : 'hello'}) fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun}) shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1}) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, self.omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) ## pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) state = pb.solve() name = op.join(self.options.out_dir, 'test_high_level_solving.vtk') pb.save_state(name, state) ok = nls_status.condition == 0 if not ok: self.report('solver did not converge!') _ok = state.has_ebc() if not _ok: self.report('EBCs violated!') ok = ok and _ok return ok
def make_h1_projection_data(target, eval_data): """ Project scalar data given by a material-like `eval_data()` function to a scalar `target` field variable using the :math:`H^1` dot product. """ order = target.field.approx_order * 2 integral = Integral('i', order=order) un = target.name v = FieldVariable('v', 'test', target.field, primary_var_name=un) lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) lhs2 = Term.new('dw_laplace(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': val = eval_data(ts, coors, mode, 'val', **kwargs) gval = eval_data(ts, coors, mode, 'grad', **kwargs) return {'val': val, 'gval': gval} m = Material('m', function=_eval_data) rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region, m=m, v=v) rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region, m=m, v=v) eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output('H1 projection: solver did not converge!')
def run(domain, order): omega = domain.create_region('Omega', 'all') bbox = domain.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] min_y, max_y = bbox[:, 1] eps = 1e-8 * (max_x - min_x) gamma1 = domain.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps), 'facet') gamma3 = domain.create_region('Gamma3', 'vertices in y < %.10f' % (min_y + eps), 'facet') gamma4 = domain.create_region('Gamma4', 'vertices in y > %.10f' % (max_y - eps), 'facet') field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=2 * order) t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) eq = Equation('eq', t1) eqs = Equations([eq]) fix1 = EssentialBC('fix1', gamma1, {'u.0': 0.4}) fix2 = EssentialBC('fix2', gamma2, {'u.0': 0.0}) def get_shift(ts, coors, region): return nm.ones_like(coors[:, 0]) dof_map_fun = Function('dof_map_fun', per.match_x_line) shift_fun = Function('shift_fun', get_shift) sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0': 'u.0'}, dof_map_fun, 'shifted_periodic', arguments=(shift_fun, )) ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('laplace', equations=eqs) pb.set_bcs(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper])) pb.set_solver(nls) state = pb.solve() return pb, state
def func(epbcs, functions, ebcs, lcbcs): return pipe( fields, get_term(property_array, delta_x), lambda x: [Equation("balance_of_forces", x)], Equations, lambda x: Problem("elasticity", equations=x, functions=functions), do(lambda x: x.time_update(ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs)), do(lambda x: x.set_solver(get_nls(x.get_evaluator()))), )
def solve_problem(shape, dims, young, poisson, force, transform=None): domain = make_domain(dims[:2], shape, transform=transform) omega = domain.regions['Omega'] gamma1 = domain.regions['Gamma1'] gamma2 = domain.regions['Gamma2'] field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1, poly_space_base='shell10x') u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') thickness = dims[2] if transform is None: pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1] elif transform == 'bend': pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1] elif transform == 'twist': pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1] m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson), values={'.drill' : 1e-7}) load = Material('load', values={'.val' : pload}) aux = Integral('i', order=3) qp_coors, qp_weights = aux.get_qp('3_8') qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5) qp_weights *= thickness integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom') t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_point_load(load.val, v)', integral, gamma2, load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([fix_u])) state = pb.solve() return pb, state, u, gamma2
def test_save_ebc(self): from sfepy.discrete import (FieldVariable, Integral, Equation, Equations, Problem) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term name = op.join(self.options.out_dir, op.splitext(op.basename(__file__))[0]) integral = Integral('i', order=1) u = self.variables['u'] v = FieldVariable('v', 'test', u.field, primary_var_name='u') p = self.variables['p'] q = FieldVariable('q', 'test', p.field, primary_var_name='p') regions = self.problem.domain.regions omega = regions['Omega'] # Problem.save_ebc() requires to have equations defined. t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u) t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p) eq = Equation('aux', t1 + t2) eqs = Equations([eq]) pb = Problem('test', equations=eqs, auto_solvers=False) all_ebcs = [] all_ebcs.append( EssentialBC('fix_u1', regions['RightFix'], {'u.all': nm.array([0.0, 1.0])})) all_ebcs.append( EssentialBC('fix_u2', regions['LeftStrip'], { 'u.0': 0.0, 'u.1': 1.0 })) all_ebcs.append( EssentialBC('fix_p1', regions['LeftFix'], {'p.all': 0.0})) all_ebcs.append( EssentialBC('fix_p2', regions['RightStrip'], {'p.0': 0.0})) ebcs = Conditions(all_ebcs) pb.time_update(ebcs=ebcs) pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True) pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False) return True
def get_problem(u_field, v_field, calc_stiffness, calc_prestress, delta_x): """Get the problem Args: u_field: the displacement field v_field: the test function field calc_stiffness: a functioin to calcuate the stiffness tensor calc_prestress: a function to calculate the prestress tensor delta_x: the mesh spacing Returns: the Sfepy problem """ return pipe( get_terms(u_field, v_field, calc_stiffness, calc_prestress), lambda x: Equation("balance_of_forces", Terms([x[0], x[1]])), lambda x: Problem("elasticity", equations=Equations([x])), do(lambda x: x.time_update(ebcs=get_bcs(v_field.field.region.domain, delta_x))), do(lambda x: x.set_solver(get_nls(x.get_evaluator()))), )
def linear_projection(pb, cval): from sfepy.discrete import (FieldVariable, Material, Integral, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.base.base import IndexedStruct mesh = Mesh.from_file(pb.conf.filename_mesh) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1) g = FieldVariable('g', 'unknown', field) f = FieldVariable('f', 'test', field, primary_var_name='g') integral = Integral('i', order=2) m = Material('m', function=set_grad) t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g) t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) pb.set_solver(nls) out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64) for ii in range(cval.shape[2]): pb.data = nm.ascontiguousarray(cval[:, :, ii, :]) pb.time_update() state = pb.solve() out[:, ii] = state.get_parts()['g'] return out
def create_mass_matrix(field): """ Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format. """ u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=field.approx_order * 2) term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u) eq = Equation('aux', term) eqs = Equations([eq]) eqs.time_update(None) dummy = eqs.create_state_vector() mtx = eqs.create_matrix_graph() mtx = eqs.eval_tangent_matrices(dummy, mtx) return mtx
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_option('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options, args = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in xrange(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0': 2.0}) ebc2 = EssentialBC('T2', right, {'T.0': -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0': ic_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) tss = SimpleTimeSteppingSolver({ 't0': 0.0, 't1': 100.0, 'n_step': 11 }, problem=pb) tss.init_time() if options.probe: # Prepare probe data. probes, labels = gen_lines(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a': 1e-16, 'i_max': 1} if options.show: plt.ion() # Solve the problem using the time stepping solver. suffix = tss.ts.suffix for step, time, state in tss(): if options.probe: # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % step), bbox_inches='tight') if options.show: plt.draw() for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2
def create_local_problem(omega_gi, order): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order) output('number of local field DOFs:', field_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field_i) v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i') integral = Integral('i', order=2 * order) mat = Material('m', lam=10, mu=5) t1 = Term.new('dw_laplace(m.lam, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) def _get_load(coors): val = nm.ones_like(coors[:, 0]) for coor in coors.T: val *= nm.sin(4 * nm.pi * coor) return val def get_load(ts, coors, mode=None, **kwargs): if mode == 'qp': return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)} load = Material('load', function=Function('get_load', get_load)) t2 = Term.new('dw_volume_lvf(load.val, v_i)', integral, omega_i, load=load, v_i=v_i) eq = Equation('balance', t1 - 100 * t2) eqs = Equations([eq]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2])) pb.update_materials() return pb
def make_l2_projection_data(target, eval_data, order=None, ls=None, nls_options=None): """ Project scalar data to a scalar `target` field variable using the :math:`L^2` dot product. Parameters ---------- target : FieldVariable instance The target variable. eval_data : callable or array Either a material-like function `eval_data()`, or an array of values in quadrature points that has to be reshapable to the shape required by `order`. order : int, optional The quadrature order. If not given, it is set to `2 * target.field.approx_order`. """ if order is None: order = 2 * target.field.approx_order integral = Integral('i', order=order) un = FieldVariable('u', 'unknown', target.field) v = FieldVariable('v', 'test', un.field, primary_var_name=un.name) lhs = Term.new('dw_volume_dot(v, %s)' % un.name, integral, un.field.region, v=v, **{un.name: un}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': if callable(eval_data): val = eval_data(ts, coors, mode, **kwargs) else: val = eval_data.reshape((coors.shape[0], 1, 1)) return {'val': val} m = Material('m', function=_eval_data) rhs = Term.new('dw_volume_lvf(m.val, v)', integral, un.field.region, m=m, v=v) eq = Equation('projection', lhs - rhs) eqs = Equations([eq]) if ls is None: ls = ScipyDirect({}) if nls_options is None: nls_options = {} nls_status = IndexedStruct() nls = Newton(nls_options, lin_solver=ls, status=nls_status) pb = Problem('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the un variable with the projection solution. pb.solve() # Copy the projection solution to target. target.set_data(un()) if nls_status.condition != 0: output('L2 projection: solver did not converge!')
fun_d=burg_fun_d) alpha = Material('alpha', val=[.0]) # FluxT = AdvectDGFluxTerm("adv_lf_flux(a.val, v, u)", "a.val, v, u[-1]", # integral, omega, u=u, v=v, a=a, alpha=alpha) FluxT = NonlinearHyperbolicDGFluxTerm("burgess_lf_flux(f, df, u, v)", "fun , fun_d, v, u[-1]", integral, omega, u=u, v=v, fun=burg_fun, fun_d=burg_fun_d) eq = Equation('balance', MassT - StiffT + FluxT) eqs = Equations([eq]) # ------------------------------ # | Create bounrady conditions | # ------------------------------ left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0}) right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0}) # ---------------------------- # | Create initial condition | # ---------------------------- def ic_wrap(x, ic=None): return ghump(x - .3)
top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps), 'vertex') field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_youngpoisson(dim=3, young=6.8e10, poisson=0.36), rho=2700.0) integral = Integral('i', order=1) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('balance_of_forces', t1) eqs = Equations([eq1]) z_displacements = np.linspace(0, 0.05, 6) vm_stresses = np.zeros([len(z_displacements), 2]) for i, z_displacement in enumerate(z_displacements): fix_bot = EssentialBC('fix_bot', bot, {'u.all': 0.0}) fix_top = EssentialBC('fix_top', top, { 'u.[0,1]': 0.0, 'u.[2]': -z_displacement }) ls = ScipyDirect({}) nls_status = IndexedStruct()
def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-d', '--dims', metavar='dims', action='store', dest='dims', default='[1.0, 1.0]', help=helps['dims']) parser.add_argument('-c', '--centre', metavar='centre', action='store', dest='centre', default='[0.0, 0.0]', help=helps['centre']) parser.add_argument('-s', '--shape', metavar='shape', action='store', dest='shape', default='[11, 11]', help=helps['shape']) parser.add_argument('-b', '--bc-kind', metavar='kind', action='store', dest='bc_kind', choices=['free', 'cantilever', 'fixed'], default='free', help=helps['bc_kind']) parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1', type=int, action='store', dest='axis', default=-1, help=helps['axis']) parser.add_argument('--young', metavar='float', type=float, action='store', dest='young', default=6.80e+10, help=helps['young']) parser.add_argument('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.36, help=helps['poisson']) parser.add_argument('--density', metavar='float', type=float, action='store', dest='density', default=2700.0, help=helps['density']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) parser.add_argument('-i', '--ignore', metavar='int', type=int, action='store', dest='ignore', default=None, help=helps['ignore']) parser.add_argument('--solver', metavar='solver', action='store', dest='solver', default= \ "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000", help=helps['solver']) parser.add_argument('--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_argument('filename', nargs='?', default=None) options = parser.parse_args() aux = options.solver.split(',') kwargs = {} for option in aux[1:]: key, val = option.split(':') kwargs[key.strip()] = eval(val) eig_conf = Struct(name='evp', kind=aux[0], **kwargs) output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' density:', options.density) output('displacement field approximation order:', options.order) output('requested %d eigenvalues' % options.n_eigs) output('using eigenvalue problem solver:', eig_conf.kind) output.level += 1 for key, val in six.iteritems(kwargs): output('%s: %r' % (key, val)) output.level -= 1 assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') filename = options.filename if filename is not None: mesh = Mesh.from_file(filename) dim = mesh.dim dims = nm.diff(mesh.get_bounding_box(), axis=0) else: dims = nm.array(eval(options.dims), dtype=nm.float64) dim = len(dims) centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] output('dimensions:', dims) output('centre: ', centre) output('shape: ', shape) mesh = gen_block_mesh(dims, shape, centre, name='mesh') output('axis: ', options.axis) assert_((-dim <= options.axis < dim), 'invalid axis value!') eig_solver = Solver.any_from_conf(eig_conf) # Build the problem definition. domain = FEDomain('domain', mesh) bbox = domain.get_mesh_bounding_box() min_coor, max_coor = bbox[:, options.axis] eps = 1e-8 * (max_coor - min_coor) ax = 'xyz'[:dim][options.axis] omega = domain.create_region('Omega', 'all') bottom = domain.create_region('Bottom', 'vertices in (%s < %.10f)' % (ax, min_coor + eps), 'facet') bottom_top = domain.create_region('BottomTop', 'r.Bottom +v vertices in (%s > %.10f)' % (ax, max_coor - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson) m = Material('m', D=mtx_d, rho=options.density) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) if options.bc_kind == 'free': pb.time_update() n_rbm = dim * (dim + 1) / 2 elif options.bc_kind == 'cantilever': fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 elif options.bc_kind == 'fixed': fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 else: raise ValueError('unsupported BC kind! (%s)' % options.bc_kind) if options.ignore is not None: n_rbm = options.ignore pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) try: eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm, eigenvectors=True) except sla.ArpackNoConvergence as ee: eigs = ee.eigenvalues svecs = ee.eigenvectors output('only %d eigenvalues converged!' % len(eigs)) output('%d eigenvalues converged (%d ignored as rigid body modes)' % (len(eigs), n_rbm)) eigs = eigs[n_rbm:] svecs = svecs[:, n_rbm:] omegas = nm.sqrt(eigs) freqs = omegas / (2 * nm.pi) output('number | eigenvalue | angular frequency ' '| frequency') for ii, eig in enumerate(eigs): output('%6d | %17.12e | %17.12e | %17.12e' % (ii + 1, eig, omegas[ii], freqs[ii])) # Make full eigenvectors (add DOFs fixed by boundary conditions). variables = pb.get_variables() vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() for ii in range(eigs.shape[0]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)', integrals=Integrals([integral]), mode='el_avg', verbose=False) out['u%03d' % ii] = aux.popitem()[1] out['strain%03d' % ii] = Struct(mode='cell', data=strain) pb.save_state('eigenshapes.vtk', out=out) pb.save_regions_as_groups('regions') if len(eigs) and options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.domain_specific import DomainSpecificPlot scaling = 0.05 * dims.max() / nm.abs(vecs).max() ds = {} for ii in range(eigs.shape[0]): pd = DomainSpecificPlot('plot_displacements', ['rel_scaling=%s' % scaling, 'color_kind="tensors"', 'color_name="strain%03d"' % ii]) ds['u%03d' % ii] = pd view = Viewer('eigenshapes.vtk') view(domain_specific=ds, only_names=sorted(ds.keys()), is_scalar_bar=False, is_wireframe=True)
'vertex') field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') # these are for stainless steel 316L m = Material('m', D=stiffness_from_youngpoisson(dim=3, young=1.93e9, poisson=0.275), rho=8000.0) integral = Integral('i', order=1) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('balance_of_forces', t1) eqs = Equations([eq1]) # materials = { # 'solid': ({'K': 1e3, # bulk modulus # 'mu': 20e0, # shear modulus of neoHookean term # 'kappa': 10e0, # shear modulus of Mooney-Rivlin term # },), # } # equations = { # 'balance': """dw_ul_he_neohook.3.Omega( solid.mu, v, u ) # + dw_ul_he_mooney_rivlin.3.Omega(solid.kappa, v, u) # + dw_ul_bulk_penalty.3.Omega( solid.K, v, u ) # = 0""", # }
def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb
def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='7,7,7', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-3', '--3d', action='store_true', dest='is_3d', default=False, help=helps['3d']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) options = parser.parse_args() dim = 3 if options.is_3d else 2 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims) output('shape: ', shape) output('centre: ', centre) mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem', verbose=True) domain0 = FEDomain('d', mesh0) bbox = domain0.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] eps = 1e-8 * (max_x - min_x) cnt = (shape[0] - 1) // 2 g0 = 0.5 * dims[0] grading = nm.array([g0 / 2**ii for ii in range(cnt)]) + eps + centre[0] - g0 domain, subs = refine_towards_facet(domain0, grading, 'x <') omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps), 'facet') field = Field.from_args('fu', nm.float64, 1, omega, approx_order=options.order) if subs is not None: field.substitute_dofs(subs) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=2*options.order) t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) eq = Equation('eq', t1) eqs = Equations([eq]) def u_fun(ts, coors, bc=None, problem=None): """ Define a displacement depending on the y coordinate. """ if coors.shape[1] == 2: min_y, max_y = bbox[:, 1] y = (coors[:, 1] - min_y) / (max_y - min_y) val = (max_y - min_y) * nm.cos(3 * nm.pi * y) else: min_y, max_y = bbox[:, 1] min_z, max_z = bbox[:, 2] y = (coors[:, 1] - min_y) / (max_y - min_y) z = (coors[:, 2] - min_z) / (max_z - min_z) val = ((max_y - min_y) * (max_z - min_z) * nm.cos(3 * nm.pi * y) * (1.0 + 3.0 * (z - 0.5)**2)) return val bc_fun = Function('u_fun', u_fun) fix1 = EssentialBC('shift_u', gamma1, {'u.0' : bc_fun}) fix2 = EssentialBC('fix2', gamma2, {'u.all' : 0.0}) ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([fix1, fix2])) state = pb.solve() if subs is not None: field.restore_dofs() filename = os.path.join(options.output_dir, 'hanging.vtk') ensure_path(filename) pb.save_state(filename, state) if options.order > 1: pb.save_state(filename, state, linearization=Struct(kind='adaptive', min_level=0, max_level=8, eps=1e-3))
def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-o', '--output-dir', default='.', help=helps['output_dir']) parser.add_argument('--R1', metavar='R1', action='store', dest='R1', default='0.5', help=helps['R1']) parser.add_argument('--R2', metavar='R2', action='store', dest='R2', default='1.0', help=helps['R2']) parser.add_argument('--C1', metavar='C1', action='store', dest='C1', default='0.0,0.0', help=helps['C1']) parser.add_argument('--C2', metavar='C2', action='store', dest='C2', default='0.0,0.0', help=helps['C2']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-v', '--viewpatch', action='store_true', dest='viewpatch', default=False, help=helps['viewpatch']) options = parser.parse_args() # Creation of the NURBS-patch with igakit R1 = eval(options.R1) R2 = eval(options.R2) C1 = list(eval(options.C1)) C2 = list(eval(options.C2)) order = options.order viewpatch = options.viewpatch create_patch(R1, R2, C1, C2, order=order, viewpatch=viewpatch) # Setting a Domain instance filename_domain = data_dir + '/meshes/iga/concentric_circles.iga' domain = IGDomain.from_file(filename_domain) # Sub-domains omega = domain.create_region('Omega', 'all') Gamma_out = domain.create_region('Gamma_out', 'vertices of set xi01', kind='facet') Gamma_in = domain.create_region('Gamma_in', 'vertices of set xi00', kind='facet') # Field (featuring order elevation) order_increase = order - domain.nurbs.degrees[0] order_increase *= int(order_increase > 0) field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order='iga', space='H1', poly_space_base='iga') # Variables u = FieldVariable('u', 'unknown', field) # unknown function v = FieldVariable('v', 'test', field, primary_var_name='u') # test function # Integral integral = Integral('i', order=2 * field.approx_order) # Term t = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u) # Equation eq = Equation('laplace', t) eqs = Equations([eq]) # Boundary Conditions u_in = EssentialBC('u_in', Gamma_in, {'u.all': 7.0}) u_out = EssentialBC('u_out', Gamma_out, {'u.all': 3.0}) # solvers ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) # problem instance pb = Problem('potential', equations=eqs, active_only=True) # Set boundary conditions pb.set_bcs(ebcs=Conditions([u_in, u_out])) # solving pb.set_solver(nls) status = IndexedStruct() state = pb.solve(status=status, save_results=True, verbose=True) # Saving the results to a classic VTK file filename = os.path.join(options.output_dir, 'concentric_circles.vtk') ensure_path(filename) pb.save_state(filename, state)
# f = Material('f', val=[[0],[0]]) integral = Integral('i', order=2) # t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', # integral, omega, m=m, v=v, u=u) # t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) # eq = Equation('balance', t1 + t2) # eqs = Equations([eq]) t1 = Term.new('dw_laplace( c.val, s, t )', integral, omega, c=c, t=t, s=s) # t2 = Term.new('dw_volume_dot( f, s, t )', integral, omega, f=f, t=t, s=s) t2 = Term.new('dw_volume_dot( f.val, s, t )', integral, omega, f=f, t=t, s=s) # t2 = Term.new('dw_volume_dot( f.val, s )', integral, omega, f=f, s=s) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) # def set_right_bc_impl(ts, coors, bc=None, problem=None, **kwargs): # x = coors[:,0] # y = coors[:,1] # val = np.sin(x)+np.sin(y) # return val def set_bc_impl(ts, coors, bc=None, problem=None, **kwargs): x = coors[:, 0] y = coors[:, 1] val = np.sin(x / np.pi) * np.sin(y / np.pi) # val = 0*x # val = 0.0001*np.ones(x.size)
[0.0, 0.0, 1.0]]) Ddlambda = numpy.array([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]) Ks = [] Ms = [] for D in [Ddmu, Ddlambda]:#, D2, D3] m = Material('m', D = D, rho = 2700.0) integral = Integral('i', order=2) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations = lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)
integral, omega, u=u, v=v, a=a, alpha=alpha) diffusion_tensor = .02 D = Material('D', val=[diffusion_tensor]) DivGrad = LaplaceTerm("diff_lap(D.val, v, u)", "D.val, v, u[-1]", integral, omega, u=u, v=v, D=D) DiffFluxT = DiffusionDGFluxTerm("diff_lf_flux(D.val, v, u)", "D.val, v, u[-1]", integral, omega, u=u, v=v, D=D) Cw = Material("Cw", values={".val": 100}) DiffPen = DiffusionInteriorPenaltyTerm("diff_pen(D.val, Cw.val, v, u)", "D.val, Cw.val, v, u[-1]", integral, omega, u=u, v=v, Cw=Cw, D=D) eq = Equation('balance', MassT # + StiffT - AdvFluxT + DivGrad - DiffFluxT + DiffPen ) eqs = Equations([eq]) # ------------------------------ # | Create bounrady conditions | # ------------------------------ left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0}) right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0}) # ---------------------------- # | Create initial condition | # ---------------------------- def ic_wrap(x, ic=None):
def main(argv=None): options = parse_args(argv=argv) # vvvvvvvvvvvvvvvv # approx_order = 2 # ^^^^^^^^^^^^^^^^ # # Setup output names outputs_folder = options.output_dir domain_name = "domain_1D" problem_name = "iburgers_1D" output_folder = pjoin(outputs_folder, problem_name, str(approx_order)) output_format = "vtk" save_timestn = 100 clear_folder(pjoin(output_folder, "*." + output_format)) configure_output({ 'output_screen': True, 'output_log_name': pjoin(output_folder, f"last_run_{problem_name}_{approx_order}.txt") }) # ------------ # | Get mesh | # ------------ X1 = 0. XN = 1. n_nod = 100 n_el = n_nod - 1 mesh = get_gen_1D_mesh_hook(X1, XN, n_nod).read(None) # ----------------------------- # | Create problem components | # ----------------------------- integral = Integral('i', order=approx_order * 2) domain = FEDomain(domain_name, mesh) omega = domain.create_region('Omega', 'all') left = domain.create_region('Gamma1', 'vertices in x == %.10f' % X1, 'vertex') right = domain.create_region('Gamma2', 'vertices in x == %.10f' % XN, 'vertex') field = DGField('dgfu', nm.float64, 'scalar', omega, approx_order=approx_order) u = FieldVariable('u', 'unknown', field, history=1) v = FieldVariable('v', 'test', field, primary_var_name='u') MassT = Term.new('dw_dot(v, u)', integral, omega, u=u, v=v) velo = nm.array(1.0) def adv_fun(u): vu = velo.T * u[..., None] return vu def adv_fun_d(u): v1 = velo.T * nm.ones(u.shape + (1, )) return v1 burg_velo = velo.T / nm.linalg.norm(velo) def burg_fun(u): vu = burg_velo * u[..., None]**2 return vu def burg_fun_d(u): v1 = 2 * burg_velo * u[..., None] return v1 StiffT = Term.new('dw_ns_dot_grad_s(fun, fun_d, u[-1], v)', integral, omega, u=u, v=v, fun=burg_fun, fun_d=burg_fun_d) # alpha = Material('alpha', val=[.0]) # FluxT = AdvectDGFluxTerm("adv_lf_flux(a.val, v, u)", "a.val, v, u[-1]", # integral, omega, u=u, v=v, a=a, alpha=alpha) FluxT = Term.new('dw_dg_nonlinear_laxfrie_flux(fun, fun_d, v, u[-1])', integral, omega, u=u, v=v, fun=burg_fun, fun_d=burg_fun_d) eq = Equation('balance', MassT - StiffT + FluxT) eqs = Equations([eq]) # ------------------------------ # | Create boundary conditions | # ------------------------------ left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0}) right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0}) # ---------------------------- # | Create initial condition | # ---------------------------- def ghump(x): """ Nice gaussian. """ return nm.exp(-200 * x**2) def ic_wrap(x, ic=None): return ghump(x - .3) ic_fun = Function('ic_fun', ic_wrap) ics = InitialCondition('ic', omega, {'u.0': ic_fun}) # ------------------ # | Create problem | # ------------------ pb = Problem(problem_name, equations=eqs, conf=Struct(options={"save_times": save_timestn}, ics={}, ebcs={}, epbcs={}, lcbcs={}, materials={}), active_only=False) pb.setup_output(output_dir=output_folder, output_format=output_format) pb.set_ics(Conditions([ics])) # ------------------ # | Create limiter | # ------------------ limiter = MomentLimiter1D # --------------------------- # | Set time discretization | # --------------------------- CFL = .2 max_velo = nm.max(nm.abs(velo)) t0 = 0 t1 = .2 dx = nm.min(mesh.cmesh.get_volumes(1)) dt = dx / max_velo * CFL / (2 * approx_order + 1) tn = int(nm.ceil((t1 - t0) / dt)) dtdx = dt / dx # ------------------ # | Create solver | # ------------------ ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status) tss_conf = { 't0': t0, 't1': t1, 'n_step': tn, 'limiters': { "dgfu": limiter } } tss = TVDRK3StepSolver(tss_conf, nls=nls, context=pb, verbose=True) # --------- # | Solve | # --------- pb.set_solver(tss) state_end = pb.solve() output("Solved equation \n\n\t\t u_t - div(f(u))) = 0\n") output(f"With IC: {ic_fun.name}") # output("and EBCs: {}".format(pb.ebcs.names)) # output("and EPBCS: {}".format(pb.epbcs.names)) output("-------------------------------------") output(f"Approximation order is {approx_order}") output(f"Space divided into {mesh.n_el} cells, " + f"{len(mesh.coors)} steps, step size is {dx}") output(f"Time divided into {tn - 1} nodes, {tn} steps, step size is {dt}") output(f"CFL coefficient was {CFL} and " + f"order correction {1 / (2 * approx_order + 1)}") output(f"Courant number c = max(abs(u)) * dt/dx = {max_velo * dtdx}") output("------------------------------------------") output(f"Time stepping solver is {tss.name}") output(f"Limiter used: {limiter.name}") output("======================================") # ---------- # | Plot 1D| # ---------- if options.plot: load_and_plot_fun(output_folder, domain_name, t0, t1, min(tn, save_timestn), ic_fun)
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--young', metavar='float', type=float, action='store', dest='young', default=2000.0, help=helps['young']) parser.add_option('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.4, help=helps['poisson']) parser.add_option('--load', metavar='float', type=float, action='store', dest='load', default=-1000.0, help=helps['load']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) options, args = parser.parse_args() assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' vertical load:', options.load) output('uniform mesh refinement level:', options.refine) # Build the problem definition. mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in xrange(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.001', 'facet') bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet') top = domain.create_region('Top', 'vertex 2', 'vertex') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') D = stiffness_from_youngpoisson(2, options.young, options.poisson) asphalt = Material('Asphalt', D=D) load = Material('Load', values={'.val': [0.0, options.load]}) integral = Integral('i', order=2 * options.order) integral0 = Integral('i', order=0) t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)', integral, omega, Asphalt=asphalt, v=v, u=u) t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) xsym = EssentialBC('XSym', bottom, {'u.1': 0.0}) ysym = EssentialBC('YSym', left, {'u.0': 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([xsym, ysym])) # Solve the problem. state = pb.solve() output(nls_status) # Postprocess the solution. out = state.create_output_dict() out = stress_strain(out, pb, state, extend=True) pb.save_state('its2D_interactive.vtk', out=out) gdata = geometry_data['2_3'] nc = len(gdata.coors) integral_vn = Integral('ivn', coors=gdata.coors, weights=[gdata.volume / nc] * nc) nodal_stress(out, pb, state, integrals=Integrals([integral_vn])) if options.probe: # Probe the solution. probes, labels = gen_lines(pb) sfield = Field.from_args('sym_tensor', nm.float64, 3, omega, approx_order=options.order - 1) stress = FieldVariable('stress', 'parameter', sfield, primary_var_name='(set-to-None)') strain = FieldVariable('strain', 'parameter', sfield, primary_var_name='(set-to-None)') cfield = Field.from_args('component', nm.float64, 1, omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') ev = pb.evaluate order = 2 * (options.order - 1) strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp') stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order, mode='qp', copy_materials=False) project_by_component(strain, strain_qp, component, order) project_by_component(stress, stress_qp, component, order) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(u, strain, stress, probe, labels[ii]) fig.savefig('its2D_interactive_probe_%d.png' % ii) all_results.append(results) for ii, results in enumerate(all_results): output('probe %d:' % ii) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 if options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer view = Viewer('its2D_interactive.vtk') view(vector_mode='warp_norm', rel_scaling=1, is_scalar_bar=True, is_wireframe=True)
def _solve(self, property_array): """ Solve the Sfepy problem for one sample. Args: property_array: array of shape (n_x, n_y, 2) where the last index is for Lame's parameter and shear modulus, respectively. Returns: the strain field of shape (n_x, n_y, 2) where the last index represents the x and y displacements """ shape = property_array.shape[:-1] mesh = self._get_mesh(shape) domain = Domain('domain', mesh) region_all = domain.create_region('region_all', 'all') field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = self._get_material(property_array, domain) integral = Integral('i', order=4) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, region_all, m=m, v=v, u=u) eq = Equation('balance_of_forces', t1) eqs = Equations([eq]) epbcs, functions = self._get_periodicBCs(domain) ebcs = self._get_displacementBCs(domain) lcbcs = self._get_linear_combinationBCs(domain) ls = ScipyDirect({}) pb = Problem('elasticity', equations=eqs, auto_solvers=None) pb.time_update( ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions) ev = pb.get_evaluator() nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix) try: pb.set_solvers_instances(ls, nls) except AttributeError: pb.set_solver(nls) vec = pb.solve() u = vec.create_output_dict()['u'].data u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:])) dims = domain.get_mesh_bounding_box().shape[1] strain = np.squeeze( pb.evaluate( 'ev_cauchy_strain.{dim}.region_all(u)'.format( dim=dims), mode='el_avg', copy_materials=False)) strain_reshape = np.reshape(strain, (shape + strain.shape[-1:])) stress = np.squeeze( pb.evaluate( 'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format( dim=dims), mode='el_avg', copy_materials=False)) stress_reshape = np.reshape(stress, (shape + stress.shape[-1:])) return strain_reshape, u_reshape, stress_reshape
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in x > %.10f' % (max_x - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0)) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print(nls_status) pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def main(cli_args): dims = parse_argument_list(cli_args.dims, float) shape = parse_argument_list(cli_args.shape, int) centre = parse_argument_list(cli_args.centre, float) material_parameters = parse_argument_list(cli_args.material_parameters, float) order = cli_args.order ts_vals = cli_args.ts.split(',') ts = { 't0': float(ts_vals[0]), 't1': float(ts_vals[1]), 'n_step': int(ts_vals[2]) } do_plot = cli_args.plot ### Mesh and regions ### mesh = gen_block_mesh(dims, shape, centre, name='block', verbose=False) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') lbn, rtf = domain.get_mesh_bounding_box() box_regions = define_box_regions(3, lbn, rtf) regions = dict( [[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])] for r in box_regions]) ### Fields ### scalar_field = Field.from_args('fu', np.float64, 'scalar', omega, approx_order=order - 1) vector_field = Field.from_args('fv', np.float64, 'vector', omega, approx_order=order) u = FieldVariable('u', 'unknown', vector_field, history=1) v = FieldVariable('v', 'test', vector_field, primary_var_name='u') p = FieldVariable('p', 'unknown', scalar_field, history=1) q = FieldVariable('q', 'test', scalar_field, primary_var_name='p') ### Material ### c10, c01 = material_parameters m = Material( 'm', mu=2 * c10, kappa=2 * c01, ) ### Boundary conditions ### x_sym = EssentialBC('x_sym', regions['Left'], {'u.0': 0.0}) y_sym = EssentialBC('y_sym', regions['Near'], {'u.1': 0.0}) z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2': 0.0}) disp_fun = Function('disp_fun', get_displacement) displacement = EssentialBC('displacement', regions['Right'], {'u.0': disp_fun}) ebcs = Conditions([x_sym, y_sym, z_sym, displacement]) ### Terms and equations ### integral = Integral('i', order=2 * order) term_neohook = Term.new('dw_tl_he_neohook(m.mu, v, u)', integral, omega, m=m, v=v, u=u) term_mooney = Term.new('dw_tl_he_mooney_rivlin(m.kappa, v, u)', integral, omega, m=m, v=v, u=u) term_pressure = Term.new('dw_tl_bulk_pressure(v, u, p)', integral, omega, v=v, u=u, p=p) term_volume_change = Term.new('dw_tl_volume(q, u)', integral, omega, q=q, u=u, term_mode='volume') term_volume = Term.new('dw_volume_integrate(q)', integral, omega, q=q) eq_balance = Equation('balance', term_neohook + term_mooney + term_pressure) eq_volume = Equation('volume', term_volume_change - term_volume) equations = Equations([eq_balance, eq_volume]) ### Solvers ### ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'i_max': 5}, lin_solver=ls, status=nls_status) ### Problem ### pb = Problem('hyper', equations=equations) pb.set_bcs(ebcs=ebcs) pb.set_ics(ics=Conditions([])) tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb) pb.set_solver(tss) ### Solution ### axial_stress = [] axial_displacement = [] def stress_strain_fun(*args, **kwargs): return stress_strain(*args, order=order, global_stress=axial_stress, global_displacement=axial_displacement, **kwargs) pb.solve(save_results=True, post_process_hook=stress_strain_fun) if do_plot: plot_graphs(material_parameters, axial_stress, axial_displacement, undeformed_length=dims[0])
def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-d', '--dims', metavar='dims', action='store', dest='dims', default='[1.0, 1.0]', help=helps['dims']) parser.add_argument('-c', '--centre', metavar='centre', action='store', dest='centre', default='[0.0, 0.0]', help=helps['centre']) parser.add_argument('-s', '--shape', metavar='shape', action='store', dest='shape', default='[11, 11]', help=helps['shape']) parser.add_argument('-b', '--bc-kind', metavar='kind', action='store', dest='bc_kind', choices=['free', 'cantilever', 'fixed'], default='free', help=helps['bc_kind']) parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1', type=int, action='store', dest='axis', default=-1, help=helps['axis']) parser.add_argument('--young', metavar='float', type=float, action='store', dest='young', default=200e+9, help=helps['young']) parser.add_argument('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.3, help=helps['poisson']) parser.add_argument('--density', metavar='float', type=float, action='store', dest='density', default=7800.0, help=helps['density']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) parser.add_argument('-i', '--ignore', metavar='int', type=int, action='store', dest='ignore', default=None, help=helps['ignore']) parser.add_argument('--solver', metavar='solver', action='store', dest='solver', default= \ "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000", help=helps['solver']) parser.add_argument('--show', action="store_true", dest='show', default=False, help=helps['show']) #parser.add_argument('filename', nargs='?', default=None) #read block.mesh #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh") parser.add_argument('filename', nargs='?', default="block_1m.mesh") options = parser.parse_args() aux = options.solver.split(',') kwargs = {} for option in aux[1:]: key, val = option.split(':') kwargs[key.strip()] = eval(val) eig_conf = Struct(name='evp', kind=aux[0], **kwargs) output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' density:', options.density) output('displacement field approximation order:', options.order) output('requested %d eigenvalues' % options.n_eigs) output('using eigenvalue problem solver:', eig_conf.kind) output.level += 1 for key, val in six.iteritems(kwargs): output('%s: %r' % (key, val)) output.level -= 1 assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') filename = options.filename if filename is not None: mesh = Mesh.from_file(filename) dim = mesh.dim dims = nm.diff(mesh.get_bounding_box(), axis=0) else: dims = nm.array(eval(options.dims), dtype=nm.float64) dim = len(dims) centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] output('dimensions:', dims) output('centre: ', centre) output('shape: ', shape) mesh = gen_block_mesh(dims, shape, centre, name='mesh') output('axis: ', options.axis) assert_((-dim <= options.axis < dim), 'invalid axis value!') eig_solver = Solver.any_from_conf(eig_conf) # Build the problem definition. domain = FEDomain('domain', mesh) bbox = domain.get_mesh_bounding_box() min_coor, max_coor = bbox[:, options.axis] eps = 1e-8 * (max_coor - min_coor) ax = 'xyz'[:dim][options.axis] omega = domain.create_region('Omega', 'all') """ bottom = domain.create_region('Bottom', 'vertices in (%s < %.10f)' % (ax, min_coor + eps), 'facet') bottom_top = domain.create_region('BottomTop', 'r.Bottom +v vertices in (%s > %.10f)' % (ax, max_coor - eps), 'facet') """ #import pdb; pdb.set_trace() left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson) m = Material('m', D=mtx_d, rho=options.density) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) """ if options.bc_kind == 'free': pb.time_update() n_rbm = dim * (dim + 1) // 2 elif options.bc_kind == 'cantilever': fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 elif options.bc_kind == 'fixed': fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 else: raise ValueError('unsupported BC kind! (%s)' % options.bc_kind) if options.ignore is not None: n_rbm = options.ignore """ fixed = EssentialBC('Fixed', left, {'u.all': 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) try: eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm, eigenvectors=True) except sla.ArpackNoConvergence as ee: eigs = ee.eigenvalues svecs = ee.eigenvectors output('only %d eigenvalues converged!' % len(eigs)) output('%d eigenvalues converged (%d ignored as rigid body modes)' % (len(eigs), n_rbm)) eigs = eigs[n_rbm:] svecs = svecs[:, n_rbm:] omegas = nm.sqrt(eigs) freqs = omegas / (2 * nm.pi) output('number | eigenvalue | angular frequency ' '| frequency') for ii, eig in enumerate(eigs): output('%6d | %17.12e | %17.12e | %17.12e' % (ii + 1, eig, omegas[ii], freqs[ii])) # Make full eigenvectors (add DOFs fixed by boundary conditions). variables = pb.get_variables() vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() for ii in range(eigs.shape[0]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)', integrals=Integrals([integral]), mode='el_avg', verbose=False) out['u%03d' % ii] = aux.popitem()[1] out['strain%03d' % ii] = Struct(mode='cell', data=strain) pb.save_state('eigenshapes.vtk', out=out) pb.save_regions_as_groups('regions') if len(eigs) and options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.domain_specific import DomainSpecificPlot scaling = 0.05 * dims.max() / nm.abs(vecs).max() ds = {} for ii in range(eigs.shape[0]): pd = DomainSpecificPlot('plot_displacements', [ 'rel_scaling=%s' % scaling, 'color_kind="tensors"', 'color_name="strain%03d"' % ii ]) ds['u%03d' % ii] = pd view = Viewer('eigenshapes.vtk') view(domain_specific=ds, only_names=sorted(ds.keys()), is_scalar_bar=False, is_wireframe=True)
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-d', '--dims', metavar='dims', action='store', dest='dims', default='[1.0, 1.0]', help=helps['dims']) parser.add_option('-c', '--centre', metavar='centre', action='store', dest='centre', default='[0.0, 0.0]', help=helps['centre']) parser.add_option('-s', '--shape', metavar='shape', action='store', dest='shape', default='[11, 11]', help=helps['shape']) parser.add_option('-b', '--bc-kind', metavar='kind', action='store', dest='bc_kind', choices=['free', 'clamped'], default='free', help=helps['bc_kind']) parser.add_option('--young', metavar='float', type=float, action='store', dest='young', default=6.80e+10, help=helps['young']) parser.add_option('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.36, help=helps['poisson']) parser.add_option('--density', metavar='float', type=float, action='store', dest='density', default=2700.0, help=helps['density']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_option('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['order']) parser.add_option('', '--show', action="store_true", dest='show', default=False, help=helps['show']) options, args = parser.parse_args() assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') dims = nm.array(eval(options.dims), dtype=nm.float64) dim = len(dims) centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] output('dimensions:', dims) output('centre: ', centre) output('shape: ', shape) output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' density:', options.density) # Build the problem definition. mesh = gen_block_mesh(dims, shape, centre, name='mesh') domain = FEDomain('domain', mesh) bbox = domain.get_mesh_bounding_box() min_y, max_y = bbox[:, 1] eps = 1e-8 * (max_y - min_y) omega = domain.create_region('Omega', 'all') bottom = domain.create_region('Bottom', 'vertices in (y < %.10f)' % (min_y + eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson) m = Material('m', D=mtx_d, rho=options.density) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) if options.bc_kind == 'free': pb.time_update() n_rbm = dim * (dim + 1) / 2 else: fixed_b = EssentialBC('FixedB', bottom, {'u.all': 0.0}) pb.time_update(ebcs=Conditions([fixed_b])) n_rbm = 0 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) try: eigs, svecs = sla.eigsh(mtx_k, k=options.n_eigs + n_rbm, M=mtx_m, which='SM', tol=1e-5, maxiter=10000) except sla.ArpackNoConvergence as ee: eigs = ee.eigenvalues svecs = ee.eigenvectors output('only %d eigenvalues converged!' % len(eigs)) eigs = eigs[n_rbm:] svecs = svecs[:, n_rbm:] output('eigenvalues:', eigs) output('eigen-frequencies:', nm.sqrt(eigs)) # Make full eigenvectors (add DOFs fixed by boundary conditions). variables = pb.get_variables() vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64) for ii in xrange(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() for ii in xrange(eigs.shape[0]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)', integrals=Integrals([integral]), mode='el_avg', verbose=False) out['u%03d' % ii] = aux.popitem()[1] out['strain%03d' % ii] = Struct(mode='cell', data=strain) pb.save_state('eigenshapes.vtk', out=out) pb.save_regions_as_groups('regions') if options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.domain_specific import DomainSpecificPlot scaling = 0.05 * dims.max() / nm.abs(vecs).max() ds = {} for ii in xrange(eigs.shape[0]): pd = DomainSpecificPlot('plot_displacements', [ 'rel_scaling=%s' % scaling, 'color_kind="tensors"', 'color_name="strain%03d"' % ii ]) ds['u%03d' % ii] = pd view = Viewer('eigenshapes.vtk') view(domain_specific=ds, only_names=sorted(ds.keys()), is_scalar_bar=False, is_wireframe=True)