def test_submission(self): train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print print print "Training Accuracy:", accuracy(train_data, predictions) predictions = [predict(model, p) for p in valid_data] print "Validation Accuracy:", accuracy(valid_data, predictions) print
def test_submission(self): train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print() print() print("Training Accuracy:", accuracy(train_data, predictions)) predictions = [predict(model, p) for p in valid_data] print("Validation Accuracy:", accuracy(valid_data, predictions)) print()
def test_submission(self): """Overall test. """ train_data = extract_features(load_adult_train_data()) valid_data = extract_features(load_adult_valid_data()) model = submission(train_data) predictions = [predict(model, p) for p in train_data] print("Training Accuracy: {0}".format( accuracy(train_data, predictions))) predictions = [predict(model, p) for p in valid_data] print("Validation Accuracy: {0}".format( accuracy(valid_data, predictions)))
def test_submission(): valid_data = test_data model = submission(train_data) predictions = [predict(model, p) for p in train_data] print print # print predictions train_accuracy = accuracy(train_data, predictions) print "Training Accuracy:", train_accuracy # print train_data predictions = [predict(model, p) for p in valid_data] valid_accuracy = accuracy(valid_data, predictions) print "Validation Accuracy:", valid_accuracy print return train_accuracy, valid_accuracy
def getPredictions(username, input_address): # read all filenames in the input folder data_list = compute_for_username(username) max_num_faces = 0 # predictions for all pictures predictions_all = [] # filename should be in format: <unique filename>_<number of faces in picture> for data in data_list: print(data) item_dict = json.loads(data) max_num_faces = max(max_num_faces, len(item_dict)) # predict for result of one picture predictions = [] for i in range(0, len(item_dict)): face = {} face["faceRectangle"] = item_dict[i]["faceRectangle"] face["result"] = (predict( model, extract_features_single_point(item_dict[i]["scores"])) >= 0.5) predictions.append(face) predictions_all.append(predictions) print max_num_faces return predictions_all, max_num_faces
def test_predict(self): """Tests the predict function. """ model = [1, 2, 1, 0, 1] point = {'features': [.4, 1, 3, .01, .1], 'label': 1} p = predict(model, point) self.assertAlmostEqual(p, 0.995929862284)
def test_predict(self): model = [1,2,1,0,1] point = {'features':[.4,1,3,.01,.1], 'label': 1} p = predict(model, point) self.assertAlmostEqual(p, 0.995929862284)
max_num_faces = max(max_num_faces, len(item_dict)) # predict for result of one picture predictions = [] for i in range(0, len(item_dict)): face = {} face["faceRectangle"] = item_dict[i]["faceRectangle"] face["result"] = (predict( model, extract_features_single_point(item_dict[i]["scores"])) >= 0.5) predictions.append(face) predictions_all.append(predictions) print max_num_faces return predictions_all, max_num_faces if __name__ == "__main__": # prepare the model train_data = extract_features(load_adult_train_data()) model = submission(train_data) print model predictions = [predict(model, p) for p in train_data] print print print "Training Accuracy:", accuracy(train_data, predictions) app.run(host='ec2-52-206-17-234.compute-1.amazonaws.com', port=8000, threaded=True)
from sgd import extract_features from sgd import logistic, dot, predict, accuracy, submission, extract_features import csv import random from test import test_submission, return_train_data, return_test_data test_submission() def predict(): train_data = return_train_data() test_data = return_test_data() model = submission(train_data) print test_data[0] # predictions = [predict(model, p) for p in train_data] predict()