# validation dataset dataset_val = u.get_dataset(coco_path, 'val') gen_val = prepare(dataset_val, epochs, batch_size, input_shape, output_shape) # fuu = next(gen_val) # import ipdb; ipdb.set_trace() # train dataset dataset_train = u.get_dataset(coco_path, 'train') gen_train = prepare(dataset_train, epochs, batch_size, input_shape, output_shape) callback = ModelSaveBestAvgAcc(filepath="model-{epoch:02d}-{avgacc:.2f}.hdf5", verbose=True, cond=filter_val('fmeasure')) losses = [] for i in range(0, 1): losses.append(binary_focal_loss(gamma=2.)) input_tensor = layers.Input(shape=input_shape) model = get_model(input_tensor=input_tensor) x = layers.Multiply()([input_tensor, model.output]) x = model(x) # import ipdb; ipdb.set_trace() model = models.Model(inputs=input_tensor, outputs=x) model.compile(optimizer=opt.Adam(lr=1e-4),
fuu = next(gen_val) # from keras.models import load_model # model = load_model( # '_demo-v14-model-09-0.97.hdf5', # custom_objects={'precision': precision, 'evaluate': evaluate}) import ipdb ipdb.set_trace() # train dataset dataset_train = u.get_dataset(coco_path, 'train') gen_train = prepare(dataset_train, epochs, batch_size, input_shape, os.path.join(coco_path, 'train_output')) callback = ModelSaveBestAvgAcc(filepath="model-{epoch:02d}-{avgacc:.2f}.hdf5", verbose=True, cond=filter_val('evaluate')) losses = [] losses.append(mse) # for i in range(0, 1): # losses.append(binary_focal_loss(gamma=2.)) # import ipdb; ipdb.set_trace() model = get_model(input_shape, dataset_val.num_classes) model.compile(optimizer=opt.Adam(lr=1e-4), loss=losses, metrics=['accuracy', precision, evaluate]) model.summary()