def load_standardized(df): df = df[[ "date", "location", "new_cases", "new_deaths", "total_cases", "total_deaths" ]] df = inject_owid_aggregates(df) df = discard_rows(df) df = inject_weekly_growth(df) df = inject_biweekly_growth(df) df = inject_doubling_days(df) df = inject_per_million(df, [ "new_cases", "new_deaths", "total_cases", "total_deaths", "weekly_cases", "weekly_deaths", "biweekly_cases", "biweekly_deaths" ]) df = inject_rolling_avg(df) df = inject_cfr(df) df = inject_days_since(df) df = inject_exemplars(df) return df.sort_values(by=["location", "date"])
def load_standardized(filename): df = _load_merged(filename) \ .drop(columns=[ 'countriesAndTerritories', 'geoId', 'day', 'month', 'year', ]) \ .rename(columns={ 'dateRep': 'date', 'cases': 'new_cases', 'deaths': 'new_deaths' }) df = df[['date', 'location', 'new_cases', 'new_deaths']] df = inject_owid_aggregates(df) df = discard_rows(df) df = inject_total_daily_cols(df, ['cases', 'deaths']) df = inject_per_million( df, ['new_cases', 'new_deaths', 'total_cases', 'total_deaths']) df = inject_cfr(df) df = inject_rolling_avg(df) df = inject_days_since_all(df) df = inject_exemplars(df) return df.sort_values(by=['location', 'date'])