Example #1
0
def clear_geo_gen(source, geometry_img_shape, **kwargs):
    # If new calibration uid invalidate our current calibration cache
    a = FromEventStream("start", ("detector_calibration_client_uid",), source)
    move_to_first(a)
    (
        a.unique(history=1).sink(
            lambda x: geometry_img_shape.lossless_buffer.clear()
        )
    )
Example #2
0
def to_event_model(data, output_info, md=None):
    """Take an iterable of data and put it into the event model

    Parameters
    ----------
    data: iterable
        The data to be inserted
    output_info: list of tuple
        The name of the data and information to put into the descriptor
    md : iterable of dicts
        an iterable of dictionaries to use as metadata for the start documents


    Yields
    -------
    name: str
        Name of doc
    document: dict
        Document of data

    Notes
    -----
    This is only for demonstration/example use, do not use for production.
    """
    if md is None:
        md = {}
    else:
        md = md.copy()
    # add some metadata
    md.update({"source": "to_event_model"})
    source = Stream()
    fes = SimpleFromEventStream("start", (), source, principle=True)
    tes = SimpleToEventStream(fes, output_info, **md)

    start = None
    for d in data:
        if not start:
            yield tes.start(d)
            yield tes.descriptor(d)
        yield tes.event(d)
    yield "stop", tes._create_stop(d)
Example #3
0
    def run_exp(delay):  # pragma: no cover
        time.sleep(delay)
        print("running exp")

        p = Publisher(proxy[0], prefix=b"raw")
        RE.subscribe(p)

        # Tiny fake pipeline
        pp = Publisher(proxy[0], prefix=b"an")
        raw_source = Stream()
        SimpleFromEventStream(
            "event",
            ("data", "img"),
            raw_source.starmap(Retrieve({"NPY_SEQ": NumpySeqHandler})),
            principle=True,
        ).map(lambda x: x * 2).SimpleToEventStream(
            ("img2", ), analysis_stage="pdf").starsink(pp)
        RE.subscribe(lambda *x: raw_source.emit(x))

        RE(bp.count([hw.img], md=dict(analysis_stage="raw")))
        print("finished exp")
        p.close()
Example #4
0
    motors = step.keys()
    yield from move()
    plt.pause(.001)
    yield from trigger_and_read(list(detectors) + list(motors))


install_kicker()
bec = BestEffortCallback()
bec.enable_plots()
hw = hw()
RE = RunEngine()
# build the pipeline
raw_source = Stream()
raw_output = SimpleFromEventStream('event', ('data', 'det_a'),
                                   raw_source,
                                   principle=True)
raw_output2 = SimpleFromEventStream('event', ('data', 'noisy_det'), raw_source)

pipeline = raw_output.union(raw_output2).map(lambda x: 1).accumulate(
    lambda x, y: x + y)

res = SimpleToEventStream(pipeline, ('result', ))

merge = AlignEventStreams(res, raw_source)
merge.starsink(bec)

RE.subscribe(lambda *x: raw_source.emit(x))
RE(
    pchain(
        bp.scan([hw.noisy_det], hw.motor, 0, 10, 10),
Example #5
0
install_kicker()
p = Publisher(glbl_dict["inbound_proxy_address"])
hw = hw()
import numpy as np

rand_img = SynSignal(
    func=lambda: np.array(np.random.random((10, 10))),
    name="img",
    labels={"detectors"},
)
RE = RunEngine()
# build the pipeline
raw_source = Stream()
raw_output = SimpleFromEventStream(
    "event", ("data", "det_a"), raw_source, principle=True
)
raw_output2 = SimpleFromEventStream("event", ("data", "noisy_det"), raw_source)
raw_output3 = SimpleFromEventStream("event", ("data", "img"), raw_source)

pipeline = (
    raw_output.union(raw_output2, raw_output3.map(np.sum))
    .map(lambda x: x ** 2)
    .accumulate(lambda x, y: x + y)
)

res = SimpleToEventStream(pipeline, ("result",))

merge = AlignEventStreams(raw_source.starmap(StripDepVar()), res)
merge.sink(pprint)
# send to viz server
Example #6
0
install_kicker()
p = Publisher(glbl_dict["inbound_proxy_address"])
hw = hw()
import numpy as np

rand_img = SynSignal(
    func=lambda: np.array(np.random.random((10, 10))),
    name="img",
    labels={"detectors"},
)
RE = RunEngine()
# build the pipeline
raw_source = Stream()
raw_output = SimpleFromEventStream("event", ("data", "det_a"),
                                   raw_source,
                                   principle=True)
raw_output2 = SimpleFromEventStream("event", ("data", "noisy_det"), raw_source)
raw_output3 = SimpleFromEventStream("event", ("data", "img"), raw_source)

pipeline = (raw_output.union(raw_output2, raw_output3.map(
    np.sum)).map(lambda x: x**2).accumulate(lambda x, y: x + y))

res = SimpleToEventStream(pipeline, ("result", ))

merge = AlignEventStreams(raw_source.starmap(StripDepVar()), res)
merge.sink(pprint)
# send to viz server
merge.starsink(p)

RE.subscribe(lambda *x: raw_source.emit(x))
Example #7
0
def amorphsivity_fem(source, **kwargs):
    pdf = SimpleFromEventStream(
        "event", ("data", "gr"), source, principle=True
    )
    return locals()
Example #8
0
def start_gen(
    raw_source,
    image_names=glbl_dict["image_fields"],
    db=glbl_dict["exp_db"],
    calibration_md_folder=None,
    **kwargs,
):
    """

    Parameters
    ----------
    raw_source
    image_name
    db : databroker.Broker
        The databroker to use
    calibration_md_folder
    kwargs

    Returns
    -------

    """
    if calibration_md_folder is None:
        calibration_md_folder = {"folder": "xpdAcq_calib_info.yml"}
    # raw_source.sink(lambda x: print(x[0]))
    # Build the general pipeline from the raw_pipeline

    # TODO: change this when new dark logic comes
    # Check that the data isn't a dark (dark_frame = True when taking a dark)
    not_dark_scan = FromEventStream(
        "start", (), upstream=raw_source, stream_name="not dark scan"
    ).map(lambda x: not x.get("dark_frame", False))
    # Fill the raw event stream
    source = (
        # Emit on works here because we emit on the not_dark_scan first due
        # to the ordering of the nodes!
        raw_source.combine_latest(not_dark_scan, emit_on=0)
        .filter(lambda x: x[1])
        .pluck(0)
        .starmap(
            Retrieve(handler_reg=db.reg.handler_reg, root_map=db.reg.root_map)
        )
        .filter(lambda x: x[0] not in ["resource", "datum"])
    )
    # source.sink(lambda x: print('Source says ', x))
    # Get all the documents
    start_docs = FromEventStream("start", (), source)
    descriptor_docs = FromEventStream(
        "descriptor", (), source, event_stream_name="primary"
    )
    event_docs = FromEventStream(
        "event", (), source, event_stream_name="primary"
    )
    all_docs = event_docs.combine_latest(
        start_docs, descriptor_docs, emit_on=0, first=True
    ).starmap(
        lambda e, s, d: {
            "raw_event": e,
            "raw_start": s,
            "raw_descriptor": d,
            "human_timestamp": _timestampstr(s["time"]),
        }
    )

    # PDF specific
    composition = FromEventStream("start", ("composition_string",), source)

    # Calibration information
    wavelength = FromEventStream("start", ("bt_wavelength",), source).unique(
        history=1
    )
    calibrant = FromEventStream(
        "start", ("dSpacing",), source, principle=True
    ).unique(history=1)
    detector = (
        FromEventStream("start", ("detector",), source)
        .union(
            *[
                FromEventStream(
                    "descriptor",
                    (
                        "configuration",
                        image_name.split("_")[0],
                        "data",
                        f'{image_name.split("_")[0]}_detector_type',
                    ),
                    source,
                    event_stream_name="primary",
                )
                for image_name in image_names
            ]
        )
        .unique(history=1)
    )

    is_calibration_img = FromEventStream("start", (), source).map(
        lambda x: "detector_calibration_server_uid" in x
    )
    # Only pass through new calibrations (prevents us from recalculating cals)
    geo_input = FromEventStream(
        "start", ("calibration_md",), source, principle=True
    ).unique(history=1)

    start_timestamp = FromEventStream("start", ("time",), source)

    # Clean out the cached darks and backgrounds on start
    # so that this will run regardless of background/dark status
    # note that we get the proper data (if it exists downstream)
    # FIXME: this is kinda an anti-pattern and needs to go lower in the
    # pipeline
    start_docs.sink(lambda x: raw_background_dark.emit(0.0))
    start_docs.sink(lambda x: raw_background.emit(0.0))
    start_docs.sink(lambda x: raw_foreground_dark.emit(0.0))

    bg_query = start_docs.map(query_background, db=db)
    bg_docs = (
        bg_query.zip(start_docs)
        .starmap(temporal_prox)
        .filter(lambda x: x != [])
        .map(lambda x: x[0].documents(fill=True))
        .flatten()
    )

    # Get foreground dark
    fg_dark_query = start_docs.map(query_dark, db=db)
    fg_dark_query.filter(lambda x: x == []).sink(
        lambda x: print("No dark found!")
    )

    raw_foreground_dark = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                fg_dark_query.filter(lambda x: x != [])
                .map(lambda x: x if not isinstance(x, list) else x[0])
                .map(lambda x: x.documents(fill=True))
                .flatten(),
                event_stream_name="primary",
            )
            for image_name in image_names
        ]
    ).map(np.float32)

    # Get bg dark
    bg_dark_query = FromEventStream("start", (), bg_docs).map(
        query_dark, db=db
    )

    raw_background_dark = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                bg_dark_query.filter(lambda x: x != [])
                .map(lambda x: x if not isinstance(x, list) else x[0])
                .map(lambda x: x.documents(fill=True))
                .flatten(),
                stream_name="raw_background_dark",
                event_stream_name="primary",
            )
            for image_name in image_names
        ]
    ).map(np.float32)

    # Pull darks from their stream if it exists
    for image_name in image_names:
        (
            FromEventStream(
                "event", ("data", image_name), source, event_stream_name="dark"
            )
            .map(np.float32)
            .connect(raw_foreground_dark)
        )

    # Get background
    raw_background = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                bg_docs,
                stream_name="raw_background",
                event_stream_name="primary",
            )
            for image_name in image_names
        ]
    ).map(np.float32)

    # Get foreground
    img_counter = FromEventStream(
        "event",
        ("seq_num",),
        source,
        stream_name="seq_num",
        # This doesn't make sense in multi-stream settings
        event_stream_name="primary",
    )
    raw_foreground = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                source,
                principle=True,
                event_stream_name="primary",
                stream_name="raw_foreground",
            )
            for image_name in image_names
        ]
    ).map(np.float32)
    raw_source.starsink(StartStopCallback())
    return locals()
Example #9
0
def clear_comp(source, iq_comp, **kwargs):
    # Clear composition every start document
    # FIXME: Needs to go after the iq_comp is defined
    a = FromEventStream("start", (), source)
    move_to_first(a)
    (a.sink(lambda x: clear_combine_latest(iq_comp, 1)))
Example #10
0
def fes_radiograph(raw_source,
                   radiograph_names=glbl_dict["radiograph_names"],
                   db=glbl_dict["exp_db"],
                   resets=None,
                   **kwargs):
    """Translate from event stream to data for radiograph processing

    Parameters
    ----------
    raw_source : Stream
        The raw data source
    radiograph_names : Stream
        The names of the data to perform radiograph transformations on
    db : Broker
        The databroker with the raw data
    resets : list of str
        Data keys which when updated with new data cause the averaging to reset
    """
    not_dark_scan = FromEventStream(
        "start", (), upstream=raw_source, stream_name="not dark scan").map(
            lambda x: not x.get("dark_frame", False))
    # Fill the raw event stream
    source = (
        # Emit on works here because we emit on the not_dark_scan first due
        # to the ordering of the nodes!
        raw_source.combine_latest(
            not_dark_scan, emit_on=0).filter(lambda x: x[1]).pluck(0).starmap(
                Retrieve(handler_reg=db.reg.handler_reg,
                         root_map=db.reg.root_map)
            ).filter(lambda x: x[0] not in ["resource", "datum"]))

    # source.sink(lambda x: print('Source says ', x))
    # Get all the documents
    start_docs = FromEventStream("start", (), source)
    descriptor_docs = FromEventStream("descriptor", (),
                                      source,
                                      event_stream_name="primary")
    event_docs = FromEventStream("event", (),
                                 source,
                                 event_stream_name="primary")
    all_docs = event_docs.combine_latest(
        start_docs, descriptor_docs, emit_on=0, first=True).starmap(
            lambda e, s, d: {
                "raw_event": e,
                "raw_start": s,
                "raw_descriptor": d,
                "human_timestamp": _timestampstr(s["time"]),
            })

    start_timestamp = FromEventStream("start", ("time", ), source)

    if resets:
        reset = union(*[
            FromEventStream("event", ('data', r), upstream=source).unique(
                history=1) for r in resets
        ])

    flat_field_query = start_docs.map(query_flat_field, db=db)

    flat_field = union(*[
        FromEventStream(
            "event",
            ("data", image_name),
            flat_field_query.filter(lambda x: x != []).map(
                lambda x: x if not isinstance(x, list) else x[0]).map(
                    lambda x: x.documents(fill=True)).flatten(),
            event_stream_name="primary",
        ) for image_name in radiograph_names
    ]).map(np.float32)

    # Get foreground dark
    fg_dark_query = start_docs.map(query_dark, db=db)
    fg_dark_query.filter(lambda x: x == []).sink(
        lambda x: print("No dark found!"))

    dark = union(*[
        FromEventStream(
            "event",
            ("data", image_name),
            fg_dark_query.filter(lambda x: x != []).map(
                lambda x: x if not isinstance(x, list) else x[0]).map(
                    lambda x: x.documents(fill=True)).flatten(),
            event_stream_name="primary",
        ) for image_name in radiograph_names
    ]).map(np.float32)

    # Pull darks from their stream if it exists
    for image_name in radiograph_names:
        (FromEventStream("event", ("data", image_name),
                         source,
                         event_stream_name="dark").map(
                             np.float32).connect(dark))

    img = union(*[
        FromEventStream(
            "event",
            ("data", image_name),
            source,
            principle=True,
            event_stream_name="primary",
            stream_name="raw_foreground",
        ) for image_name in radiograph_names
    ]).map(np.float32)
    raw_source.starsink(StartStopCallback())
    return locals()
Example #11
0
def fes_radiograph(
    raw_source,
    radiograph_names=glbl_dict["radiograph_names"],
    db=glbl_dict["exp_db"],
    resets=None,
    **kwargs
):
    """Translate from event stream to data for radiograph processing

    Parameters
    ----------
    raw_source : Stream
        The raw data source
    radiograph_names : Stream
        The names of the data to perform radiograph transformations on
    db : Broker
        The databroker with the raw data
    resets : list of str
        Data keys which when updated with new data cause the averaging to reset
    """
    not_dark_scan = FromEventStream(
        "start", (), upstream=raw_source, stream_name="not dark scan"
    ).map(lambda x: not x.get("dark_frame", False))
    # Fill the raw event stream
    source = (
        # Emit on works here because we emit on the not_dark_scan first due
        # to the ordering of the nodes!
        raw_source.combine_latest(not_dark_scan, emit_on=0)
        .filter(lambda x: x[1])
        .pluck(0)
        .starmap(
            Retrieve(handler_reg=db.reg.handler_reg, root_map=db.reg.root_map)
        )
        .filter(lambda x: x[0] not in ["resource", "datum"])
    )

    # source.sink(lambda x: print('Source says ', x))
    # Get all the documents
    start_docs = FromEventStream("start", (), source)
    descriptor_docs = FromEventStream(
        "descriptor", (), source, event_stream_name="primary"
    )
    event_docs = FromEventStream(
        "event", (), source, event_stream_name="primary"
    )
    all_docs = event_docs.combine_latest(
        start_docs, descriptor_docs, emit_on=0, first=True
    ).starmap(
        lambda e, s, d: {
            "raw_event": e,
            "raw_start": s,
            "raw_descriptor": d,
            "human_timestamp": _timestampstr(s["time"]),
        }
    )

    start_timestamp = FromEventStream("start", ("time",), source)

    if resets:
        reset = union(*[FromEventStream("event", ('data', r), upstream=source).unique(history=1) for r in resets])

    flat_field_query = start_docs.map(query_flat_field, db=db)

    flat_field = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                flat_field_query.filter(lambda x: x != [])
                    .map(lambda x: x if not isinstance(x, list) else x[0])
                    .map(lambda x: x.documents(fill=True))
                    .flatten(),
                event_stream_name="primary",
            )
            for image_name in radiograph_names
        ]
    ).map(np.float32)

    # Get foreground dark
    fg_dark_query = start_docs.map(query_dark, db=db)
    fg_dark_query.filter(lambda x: x == []).sink(
        lambda x: print("No dark found!")
    )

    dark = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                fg_dark_query.filter(lambda x: x != [])
                .map(lambda x: x if not isinstance(x, list) else x[0])
                .map(lambda x: x.documents(fill=True))
                .flatten(),
                event_stream_name="primary",
            )
            for image_name in radiograph_names
        ]
    ).map(np.float32)

    # Pull darks from their stream if it exists
    for image_name in radiograph_names:
        (
            FromEventStream(
                "event", ("data", image_name), source, event_stream_name="dark"
            )
            .map(np.float32)
            .connect(dark)
        )

    img = union(
        *[
            FromEventStream(
                "event",
                ("data", image_name),
                source,
                principle=True,
                event_stream_name="primary",
                stream_name="raw_foreground",
            )
            for image_name in radiograph_names
        ]
    ).map(np.float32)
    raw_source.starsink(StartStopCallback())
    return locals()