Example #1
0
def test_cstat_rsppha():
    """What does CSTAT calculate when there is an RSP+PHA instrument model.

    This includes the AREASCAL when evaluating the model.

    See Also
    --------
    test_cstat_nophamodel, test_cstat_arfpha, test_cstat_rmfpha
    """

    dset, mdl, expected = setup_likelihood(scale=True)

    # use the full channel grid; the energy grid has to be
    # "the same" as the channel values since the model
    # has a dependency on the independent axis
    #
    egrid = 1.0 * np.concatenate((dset.channel, [dset.channel.max() + 1]))
    arf = make_arf(energ_lo=egrid[:-1], energ_hi=egrid[1:])
    rmf = make_ideal_rmf(e_min=egrid[:-1], e_max=egrid[1:])

    mdl_ascal = RSPModelPHA(arf, rmf, dset, mdl)

    stat = CStat()
    sval_ascal = stat.calc_stat(dset, mdl_ascal)

    assert_allclose(sval_ascal[0], expected)
def test_rspmodelpha_delta_call(ignore):
    """What happens calling a rsp with a pha (RMF is a delta fn)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        de = estep * 0.9
        e0 = egrid[ignore]
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The model is evaluated on the RMF grid, not whatever
    # is sent in. It is also integrated across the bins,
    # which is why there is a multiplication by the
    # grid width (for this constant model).
    #
    # Note that the filter doesn't change the grid.
    #
    de = egrid[1:] - egrid[:-1]
    expected = constant * specresp * de
    out = wrapped([4, 5])
    assert_allclose(out, expected)
def test_rspmodelpha_matrix_call(ignore):
    """What happens calling a rsp with a pha (RMF is a matrix)?

    The ignore value gives the channel to ignore (counting from 0).
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    elo = rdata.energ_lo
    ehi = rdata.energ_hi

    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    nchans = rdata.e_min.size

    constant = 22.3
    slope = -1.2
    mdl = Polynom1D('sloped')
    mdl.c0 = constant
    mdl.c1 = slope

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    # force energy units (only needed if ignore is set)
    pha.set_analysis('energy')

    if ignore is not None:
        e0 = rdata.e_min[ignore]
        e1 = rdata.e_max[ignore]
        de = 0.9 * (e1 - e0)
        pha.notice(lo=e0, hi=e0 + de, ignore=True)

        # The assert are intended to help people reading this
        # code rather than being a useful check that the code
        # is working.
        mask = [True] * nchans
        mask[ignore] = False
        assert (pha.mask == mask).all()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # The filter does not change the grid
    modvals = specresp * mdl(rdata.energ_lo, rdata.energ_hi)
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    out = wrapped([4, 5])
    assert_allclose(out, expected)
def test_rsp1d_delta_pha_zero_energy_bin():
    "What happens when the first bin starts at 0, with replacement"

    ethresh = 2.0e-7

    # PHA and ARF have different exposure ties
    exposure1 = 0.1
    exposure2 = 2.4
    egrid = np.asarray([0.0, 0.1, 0.2, 0.4, 0.5, 0.7, 0.8])
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = np.asarray([10.2, 9.8, 10.0, 12.0, 8.0, 10.0])

    with warnings.catch_warnings(record=True) as ws:
        warnings.simplefilter("always")
        adata = create_arf(elo,
                           ehi,
                           specresp,
                           exposure=exposure1,
                           ethresh=ethresh)

    validate_zero_replacement(ws, 'ARF', 'user-arf', ethresh)

    with warnings.catch_warnings(record=True) as ws:
        warnings.simplefilter("always")
        rdata = create_delta_rmf(elo, ehi, ethresh=ethresh)

    validate_zero_replacement(ws, 'RMF', 'delta-rmf', ethresh)

    channels = np.arange(1, 7, dtype=np.int16)
    counts = np.ones(6, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure2)
    pha.set_rmf(rdata)
    pha.set_arf(adata)

    pha.set_analysis('energy')

    mdl = MyPowLaw1D()
    tmdl = PowLaw1D()

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    out = wrapped([0.1, 0.2])

    elo[0] = ethresh
    expected = specresp * tmdl(elo, ehi)

    assert_allclose(out, expected)
    assert not np.isnan(out[0])
def test_rspmodelpha_matrix_call_xspec():
    """Check XSPEC constant is invariant to wavelength/energy setting.

    As XSPEC models internally convert from Angstrom to keV,
    do a simple check here.
    """

    exposure = 200.1
    rdata = create_non_delta_rmf()
    specresp = create_non_delta_specresp()
    adata = create_arf(rdata.energ_lo,
                       rdata.energ_hi,
                       specresp,
                       exposure=exposure)

    constant = 2.3
    mdl = XSconstant('flat')
    mdl.factor = constant

    nchans = rdata.e_min.size
    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)

    # The set_arf call isn't necessary, but leave in
    pha.set_arf(adata)
    pha.set_rmf(rdata)

    # The XSPEC models are evaluated on an energy grid, even when
    # the analysis setting is wavelength. Also, unlike the Sherpa
    # Constant model, the XSPEC XSconstant model is defined
    # over the integrated bin, so no correction is needed for the
    # bin width.
    #
    modvals = constant * specresp
    matrix = get_non_delta_matrix()
    expected = np.matmul(modvals, matrix)

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    pha.set_analysis('wave')
    out_wl = wrapped([4, 5])
    assert_allclose(out_wl, expected)

    pha.set_analysis('energy')
    out_en = wrapped([4, 5])
    assert_allclose(out_en, expected)
def test_rspmodelpha_delta_call_wave():
    """What happens calling a rsp with a pha (RMF is a delta fn)? Wavelength.

    Unlike the energy case no bins are ignored, as this code path
    has already been tested.
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    pha.set_analysis('wave')

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # Note that this is a Sherpa model, so it's normalization is
    # per unit x axis, so when integrated here the bins are in
    # Angstroms, so the bin width to multiply by is
    # Angstroms, not keV.
    #
    dl = (DataPHA._hc / elo) - (DataPHA._hc / ehi)
    expected = constant * specresp * dl

    out = wrapped([4, 5])
    assert_allclose(out, expected)
def test_rspmodelpha_delta_call_channel():
    """What happens calling a rsp with a pha (RMF is a delta fn)? Channels.

    I am not convinced I understand the bin width calculation here,
    as it doesn't seem to match the wavelength case.
    """

    exposure = 200.1
    estep = 0.025
    egrid = np.arange(0.1, 0.8, estep)
    elo = egrid[:-1]
    ehi = egrid[1:]
    specresp = 2.4 * np.ones(elo.size, dtype=np.float32)
    specresp[2:5] = 0.0
    specresp[16:19] = 3.2
    adata = create_arf(elo, ehi, specresp, exposure=exposure)
    rdata = create_delta_rmf(elo, ehi, e_min=elo, e_max=ehi)
    nchans = elo.size

    constant = 2.3
    mdl = Const1D('flat')
    mdl.c0 = constant

    channels = np.arange(1, nchans + 1, dtype=np.int16)
    counts = np.ones(nchans, dtype=np.int16)
    pha = DataPHA('test-pha',
                  channel=channels,
                  counts=counts,
                  exposure=exposure)
    pha.set_rmf(rdata)

    pha.set_analysis('channel')

    wrapped = RSPModelPHA(adata, rdata, pha, mdl)

    # Since this is channels you might expect the bin width to be 1,
    # but it is actually still dE.
    #
    de = ehi - elo
    expected = constant * specresp * de

    out = wrapped([4, 5])
    assert_allclose(out, expected)
Example #8
0
def prepare_spectra(group, nH, add_gal, redshift):
    pha = read_pha("core_spectrum.pi")
    pha.set_analysis("energy")
    pha.notice(0.5, 7.0)
    tabs = ~pha.mask
    pha.group_counts(group, tabStops=tabs)
    x = pha.get_x()
    x = pha.apply_filter(x, pha._middle)
    y = pha.get_y(filter=True)
    pha.set_analysis("energy")

    model = xsphabs.abs1 * powlaw1d.srcp1
    print("Fitting the spectrum")

    zFlag = False
    if (nH is not None) and (nH > 0.0):
        if add_gal == 1:
            model = xsphabs.gal * xszphabs.abs1 * powlaw1d.srcp
            gal.nH = nH
            freeze(gal.nH)
            zFlag = True

        else:
            model = xsphabs.abs1 * powlaw1d.srcp1
            abs1.nH = nH
            freeze(abs1.nH)
    else:
        model = xszphabs.abs1 * powlaw1d.srcp1
        zFlag = True

    if zFlag is True and add_gal == 1:
        # print('REDSHIFT',redshift)
        abs1.redshift = redshift
        freeze(abs1.redshift)

    full_model = RSPModelPHA(pha.get_arf(), pha.get_rmf(), pha, pha.exposure * model)

    print(full_model)

    fit = Fit(pha, full_model, method=MonCar(), stat=WStat())
    res = fit.fit()

    print(res.format())
    print(fit.est_errors())

    # calculate the p-value for wstat
    mplot2 = ModelPlot()
    mplot2.prepare(pha, full_model)

    miu = mplot2.y * pha.exposure * 0.0146
    obs = y * pha.exposure * 0.0146

    c, ce, cv = gof_cstat(miu, obs)

    print(f"C0={c},C_e={ce},C_v={cv}")

    zval = (fit.calc_stat() - ce) / np.sqrt(cv)

    if zval > 0:
        pval = special.erfc(zval / np.sqrt(2))
    else:
        pval = special.erf(abs(zval) / np.sqrt(2))

    print(f"p-value for wstat = {pval}")

    set_data(pha)
    set_model(model)
    save_chart_spectrum("core_flux_chart.dat", elow=0.5, ehigh=7.0)
    # save_chart_spectrum("core_flux_chart.rdb",format='text/tsv', elow=0.5, ehigh=7.0)
    save_spectrum_rdb("core_flux_chart.dat")
Example #9
0
    def prepare_spectra(nH: float,
                        group: int = 1,
                        add_gal: bool = False,
                        redshift: Optional[float] = None,
                        **kwargs) -> float:
        """
        Fit the spectra using an absorbed powerlaw model using the Wstat statistic. The function also returns a p-value for the gof.
        :param nH: The galactic absorption column density in units of 10^22 /cm3
        :param group: The number of counts per energy bin
        :param add_gal: Setting this to True would add an intrinsic abrosption column density along side the galactic one
        :param redshift: The redshift to use in the fit. Only takes effect if add_gal is set to True
        ...
        :return: Returns the p-value of the gof. The null hypothesis states that the model and the observation differ while alternate says that the model explains the data
        """

        pha = read_pha("core_spectrum.pi")
        pha.set_analysis("energy")
        pha.notice(0.5, 7.0)
        tabs = ~pha.mask
        pha.group_counts(group, tabStops=tabs)
        x = pha.get_x()
        x = pha.apply_filter(x, pha._middle)
        y = pha.get_y(filter=True)
        pha.set_analysis("energy")

        model = xsphabs.abs1 * powlaw1d.srcp1
        print("Fitting the spectrum")

        zFlag = False
        if (nH is not None) and (nH > 0.0):
            if add_gal == 1:
                model = xsphabs.gal * xszphabs.abs1 * powlaw1d.srcp
                gal.nH = nH
                freeze(gal.nH)
                zFlag = True

            else:
                model = xsphabs.abs1 * powlaw1d.srcp1
                abs1.nH = nH
                freeze(abs1.nH)
        else:
            model = xszphabs.abs1 * powlaw1d.srcp1
            zFlag = True

        if zFlag is True and add_gal == 1:
            # print('REDSHIFT',redshift)
            abs1.redshift = redshift
            freeze(abs1.redshift)

        full_model = RSPModelPHA(pha.get_arf(), pha.get_rmf(), pha,
                                 pha.exposure * model)

        print(full_model)

        fit = Fit(pha, full_model, method=MonCar(), stat=WStat())
        res = fit.fit()

        print(res.format())
        print(fit.est_errors())

        # calculate the p-value for wstat
        mplot2 = ModelPlot()
        mplot2.prepare(pha, full_model)

        miu = mplot2.y * pha.exposure * 0.0146
        obs = y * pha.exposure * 0.0146

        c, ce, cv = SpecUtils.estimate_gof_cstat(miu, obs)

        #print(f"C0={c},C_e={ce},C_v={cv}")

        zval = (fit.calc_stat() - ce) / np.sqrt(cv)

        if zval > 0:
            pval = special.erfc(zval / np.sqrt(2))
        else:
            pval = special.erf(abs(zval) / np.sqrt(2))

        print(f"p-value for wstat = {pval}")

        set_data(pha)
        set_model(model)
        save_chart_spectrum("core_flux_chart.dat", elow=0.5, ehigh=7.0)
        # save_chart_spectrum("core_flux_chart.rdb",format='text/tsv', elow=0.5, ehigh=7.0)
        SAOTraceUtils.save_spectrum_rdb("core_flux_chart.dat")

        return pval
Example #10
0
plt.ylim(1e4, 3e6)
plt.xlim(0, 10)
plt.xlabel('Energy (keV)')
plt.ylabel('Count / keV')
savefig('rspmodelnopha_energy.png')


from sherpa.astro.io import read_pha
from sherpa.astro.instrument import RSPModelPHA

pha2 = read_pha('3c273.pi')
arf2 = pha2.get_arf()
rmf2 = pha2.get_rmf()

mdl2 = PowLaw1D('mdl2')
inst2 = RSPModelPHA(arf2, rmf2, pha2, mdl2)
report("inst2")

dump("inst2([]).size")

pha2.set_analysis('energy')
report('pha2.get_filter()')
report('pha2.get_filter_expr()')

pha2.notice(0.5, 7.0)
report('pha2.get_filter()')
report('pha2.get_filter_expr()')

dump("pha2.grouped")
# pha2.ungroup()
# report('pha2.get_filter_expr()')