def test_ARFModelPHA(self): from sherpa.astro import ui ui.load_pha(self.make_path("3c120_meg_1.pha")) # remove the RMF to ensure this is an ARF-only analysis # (which is what is needed to trigger the bug that lead to #699) ui.get_data().set_rmf(None) ui.group_counts(20) ui.notice(0.5, 6) ui.subtract() ui.set_model(ui.xsphabs.abs1 * (ui.xsapec.bubble + ui.powlaw1d.p1)) ui.set_xsabund('angr') ui.set_xsxsect('vern') abs1.nh = 0.163 abs1.nh.freeze() p1.ampl = 0.017 p1.gamma = 1.9 bubble.kt = 0.5 bubble.norm = 4.2e-5 tol = 1.0e-2 ui.set_method_opt('ftol', tol) ui.fit() result = ui.get_fit_results() assert result.numpoints == self._fit_using_ARFModelPHA['numpoints'] assert result.dof == self._fit_using_ARFModelPHA['dof']
def test_eqwith_err1(make_data_path, restore_xspec_settings): def check1(e0, e1, e2): assert e0 == approx(0.028335201547206704, rel=1.0e-3) assert e1 == approx(-0.00744118799274448756, rel=1.0e-3) assert e2 == approx(0.0706249544851336, rel=1.0e-3) ui.set_xsabund('angr') ui.set_xsxsect('bcmc') ui.load_pha(make_data_path('3c273.pi')) ui.notice(0.5, 7.0) ui.set_stat("chi2datavar") ui.set_method("simplex") ui.set_model('powlaw1d.p1+gauss1d.g1') g1.fwhm = 0.1 g1.pos = 2.0 ui.freeze(g1.pos, g1.fwhm) ui.fit() numpy.random.seed(2345) e = ui.eqwidth(p1, p1 + g1, error=True, niter=100) check1(e[0], e[1], e[2]) params = e[3] numpy.random.seed(2345) e = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100) check1(e[0], e[1], e[2]) parvals = ui.get_fit_results().parvals assert parvals[0] == approx(1.9055272902160334, rel=1.0e-3) assert parvals[1] == approx(0.00017387966749772638, rel=1.0e-3) assert parvals[2] == approx(1.279415076070516e-05, rel=1.0e-3)
def test_eqwith_err1(make_data_path, restore_xspec_settings): def check1(e0, e1, e2): assert e0 == pytest.approx(0.028335201547206704, rel=1.0e-3) assert e1 == pytest.approx(-0.00744118799274448756, rel=1.0e-3) assert e2 == pytest.approx(0.0706249544851336, rel=1.0e-3) ui.set_xsabund('angr') ui.set_xsxsect('bcmc') ui.load_pha(make_data_path('3c273.pi')) ui.notice(0.5, 7.0) ui.set_stat("chi2datavar") ui.set_method("simplex") ui.set_model('powlaw1d.p1+gauss1d.g1') g1.fwhm = 0.1 g1.pos = 2.0 ui.freeze(g1.pos, g1.fwhm) ui.fit() np.random.seed(2345) e = ui.eqwidth(p1, p1 + g1, error=True, niter=100) check1(e[0], e[1], e[2]) params = e[3] np.random.seed(2345) e = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100) check1(e[0], e[1], e[2]) parvals = ui.get_fit_results().parvals assert parvals[0] == pytest.approx(1.9055272902160334, rel=1.0e-3) assert parvals[1] == pytest.approx(0.00017387966749772638, rel=1.0e-3) assert parvals[2] == pytest.approx(1.279415076070516e-05, rel=1.0e-3)
def test_eqwith_err(make_data_path, restore_xspec_settings): def check(a0, a1, a2): assert a0 == approx(0.16443033244310976, rel=1e-3) assert a1 == approx(0.09205564216156815, rel=1e-3) assert a2 == approx(0.23933118287470895, rel=1e-3) ui.set_method('neldermead') ui.set_stat('cstat') ui.set_xsabund('angr') ui.set_xsxsect('bcmc') ui.load_data(make_data_path('12845.pi')) ui.notice(0.5, 7) ui.set_model("xsphabs.gal*xszphabs.zabs*(powlaw1d.p1+xszgauss.g1)") ui.set_par(gal.nh, 0.08) ui.freeze(gal) ui.set_par(zabs.redshift, 0.518) ui.set_par(g1.redshift, 0.518) ui.set_par(g1.Sigma, 0.01) ui.freeze(g1.Sigma) ui.set_par(g1.LineE, min=6.0, max=7.0) ui.fit() numpy.random.seed(12345) result = ui.eqwidth(p1, p1 + g1, error=True, niter=100) check(result[0], result[1], result[2]) params = result[3] numpy.random.seed(12345) result = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100) check(result[0], result[1], result[2]) parvals = ui.get_fit_results().parvals assert parvals[0] == approx(0.6111340686157877, rel=1.0e-3) assert parvals[1] == approx(1.6409785803466297, rel=1.0e-3) assert parvals[2] == approx(8.960926761312153e-05, rel=1.0e-3) assert parvals[3] == approx(6.620017726014523, rel=1.0e-3) assert parvals[4] == approx(1.9279114810359657e-06, rel=1.0e-3)
def test_eqwith_err(make_data_path, restore_xspec_settings): def check(a0, a1, a2): assert a0 == pytest.approx(0.16443033244310976, rel=1e-3) assert a1 == pytest.approx(0.09205564216156815, rel=1e-3) assert a2 == pytest.approx(0.23933118287470895, rel=1e-3) ui.set_method('neldermead') ui.set_stat('cstat') ui.set_xsabund('angr') ui.set_xsxsect('bcmc') ui.load_data(make_data_path('12845.pi')) ui.notice(0.5, 7) ui.set_model("xsphabs.gal*xszphabs.zabs*(powlaw1d.p1+xszgauss.g1)") ui.set_par(gal.nh, 0.08) ui.freeze(gal) ui.set_par(zabs.redshift, 0.518) ui.set_par(g1.redshift, 0.518) ui.set_par(g1.Sigma, 0.01) ui.freeze(g1.Sigma) ui.set_par(g1.LineE, min=6.0, max=7.0) ui.fit() np.random.seed(12345) result = ui.eqwidth(p1, p1 + g1, error=True, niter=100) check(result[0], result[1], result[2]) params = result[3] np.random.seed(12345) result = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100) check(result[0], result[1], result[2]) parvals = ui.get_fit_results().parvals assert parvals[0] == pytest.approx(0.6111340686157877, rel=1.0e-3) assert parvals[1] == pytest.approx(1.6409785803466297, rel=1.0e-3) assert parvals[2] == pytest.approx(8.960926761312153e-05, rel=1.0e-3) assert parvals[3] == pytest.approx(6.620017726014523, rel=1.0e-3) assert parvals[4] == pytest.approx(1.9279114810359657e-06, rel=1.0e-3)
def test_xspec_con_ui_cflux(make_data_path, clean_astro_ui, restore_xspec_settings): """Check cflux from the UI layer with a response.""" from sherpa.astro import xspec infile = make_data_path('3c273.pi') ui.load_pha('random', infile) ui.subtract('random') ui.ignore(None, 0.5) ui.ignore(7, None) ui.set_source('random', 'xsphabs.gal * xscflux.sflux(powlaw1d.pl)') mdl = ui.get_source('random') assert mdl.name == '(xsphabs.gal * xscflux.sflux(powlaw1d.pl))' assert len(mdl.pars) == 7 assert mdl.pars[0].fullname == 'gal.nH' assert mdl.pars[1].fullname == 'sflux.Emin' assert mdl.pars[2].fullname == 'sflux.Emax' assert mdl.pars[3].fullname == 'sflux.lg10Flux' assert mdl.pars[4].fullname == 'pl.gamma' assert mdl.pars[5].fullname == 'pl.ref' assert mdl.pars[6].fullname == 'pl.ampl' assert isinstance(mdl.lhs, xspec.XSphabs) assert isinstance(mdl.rhs, xspec.XSConvolutionModel) gal = ui.get_model_component('gal') sflux = ui.get_model_component('sflux') pl = ui.get_model_component('pl') assert isinstance(gal, xspec.XSphabs) assert isinstance(sflux, xspec.XScflux) assert isinstance(pl, PowLaw1D) # the convolution model needs the normalization to be fixed # (not for this example, as we are not fitting, but do this # anyway for reference) pl.ampl.frozen = True sflux.emin = 1 sflux.emax = 5 sflux.lg10Flux = -12.3027 pl.gamma = 2.03 gal.nh = 0.039 ui.set_xsabund('angr') ui.set_xsxsect('vern') # check we get the "expected" statistic (so this is a regression # test). # ui.set_stat('chi2gehrels') sinfo = ui.get_stat_info() assert len(sinfo) == 1 sinfo = sinfo[0] assert sinfo.numpoints == 40 assert sinfo.dof == 37 assert sinfo.statval == pytest.approx(21.25762265234619) # Do we get the same flux from Sherpa's calc_energy_flux? # cflux = ui.calc_energy_flux(id='random', model=sflux(pl), lo=1, hi=5) lcflux = np.log10(cflux) assert lcflux == pytest.approx(sflux.lg10Flux.val)
elo, ehi = args.energyrange.split(':') elo, ehi = float(elo), float(ehi) load_pha(id, filename) try: assert get_rmf(id).energ_lo[0] > 0 assert get_arf(id).energ_lo[0] > 0 assert (get_bkg(id).counts > 0).sum() > 0 except: traceback.print_exc() sys.exit(0) set_xlog() set_ylog() set_stat('cstat') set_xsabund('wilm') set_xsxsect('vern') set_analysis(id, 'ener', 'counts') ignore(None, elo) ignore(ehi, None) notice(elo, ehi) prefix = filename + '_xagnfitter_out_' #import json #z = float(open(filename + '.z').read()) #galnh_value = float(open(filename + '.nh').read()) galabso = auto_galactic_absorption() galabso.nH.freeze() if args.backgroundmodel == 'chandra':