def test_fit_plot_see_errorbar_warnings(caplog, statClass, flag): """Do we see the warning when expected - fit plot? This looks for the 'The displayed errorbars have been supplied with the data or calculated using chi2xspecvar; the errors are not used in fits with <>' message. These are messages displayed to the Sherpa logger at the warning level, rather than using the warnings module, so the Sherpa capture_all_warnings test fixture does not come into play. Parameters ---------- stat : sherpa.stats.Stat instance flag : bool True if the warning should be created, False otherwise """ d = example_data() m = example_model() dplot = DataPlot() mplot = ModelPlot() fplot = FitPlot() # Internal check: this test requires that either yerrorbars is set # to True, or not included, in the plot preferences. So check this # assumption. # # I am skipping model plot here, since it is assumed that there # are no errors on the model. # prefname = 'yerrorbars' for plot in [dplot, fplot]: prefs = plot.plot_prefs assert (prefname not in prefs) or prefs[prefname] stat = statClass() # Ensure that the logging is set to WARNING since there # appears to be some test that changes it to ERROR. # with caplog.at_level(logging.INFO, logger='sherpa'): dplot.prepare(d, stat) mplot.prepare(d, m, stat) fplot.prepare(dplot, mplot) if flag: nwarn = 1 else: nwarn = 0 check_for_warning(caplog, nwarn, stat.name)
def test_fit_residstyle_plot_no_errors_no_errorbar_warnings( caplog, plotClass, statClass): """Should not see warnings when no error bars are drawn (See #621). This is a copy of test_fit_residstyle_plot_see_errorbar_warnings except that the 'yerrorbars' preference setting for all plots is 'False'. Parameters ---------- plotClass : {sherpa.plot.ResidPlot, sherpa.plot.RatioPlot} The plot to test. statClass : sherpa.stats.Stat instance Notes ----- Is this an accurate example of how 'plot_fit_resid' is created? """ d = example_data() m = example_model() dplot = DataPlot() mplot = ModelPlot() fplot = FitPlot() rplot = plotClass() jplot = JointPlot() prefname = 'yerrorbars' for plot in [dplot, rplot]: prefs = plot.plot_prefs prefs[prefname] = False stat = statClass() # Ensure that the logging is set to WARNING since there # appears to be some test that changes it to ERROR. # with caplog.at_level(logging.INFO, logger='sherpa'): dplot.prepare(d, stat) mplot.prepare(d, m, stat) fplot.prepare(dplot, mplot) rplot.prepare(d, m, stat) jplot.plottop(fplot) jplot.plotbot(rplot) check_for_warning(caplog, 0, stat.name)
from sherpa.optmethods import NelderMead f.method = NelderMead() resn = f.fit() print("Change in statistic: {}".format(resn.dstatval)) fit2 = Fit(d, mdl, method=NelderMead()) fit2.fit() mdl.c1.thaw() f.method = original_method res2 = f.fit() report("res2.format()") from sherpa.plot import DelchiPlot, FitPlot, SplitPlot fplot = FitPlot() rplot = DelchiPlot() splot = SplitPlot() mplot.prepare(f.data, f.model) fplot.prepare(dplot, mplot) splot.addplot(fplot) rplot.prepare(f.data, f.model, f.stat) splot.addplot(rplot) savefig("fit_delchi_c0_c1_c2.png") # what does JointPlot do? from sherpa.plot import JointPlot jplot = JointPlot() jplot.plottop(fplot) jplot.plotbot(rplot)
mplot.prepare(d, mdl) dplot = DataPlot() dplot.prepare(d) mplot.overplot() #set error methods, ChiSq() or LeastSq() #Chi square is a way to compare which profile best describes data, ie: is it more gaussian or lorentzian #Least Square says how good the data fits the particular model instance #opt - optimizers improve the fit. Monte Carlo is what I used, it is slow but it is most robust. Many options on sherpas site ustat = LeastSq() opt = MonCar() #LevMar() #NelderMead() # #apply actual Fit f = Fit(d, mdl, stat=ustat, method=opt) res = f.fit() fplot = FitPlot() mplot.prepare(d, mdl) fplot.prepare(dplot, mplot) fplot.plot() #param_errors = f.est_errors() #plotting routine plt.plot(d.x, d.y, "c.", label="Data") plt.plot(d.x, mdl(d.x), linewidth=2, label="Gaussian") plt.legend(loc=2) plt.title(fits_image_filename) plt.xlabel("Wavelength nm") plt.ylabel("Normalized Intensity") os.chdir(r"/home/dtyler/Desktop/DocumentsDT/outputs") os.mkdir("images_" + fits_image_filename)
def fit(star_name, data, model, silent=False, breakdown=False): """A function that will fit a given multi-part model to a given spectrum. :param star_name: Name of the target star :type star_name: str :param data: Spectrum data in the form (wave, flux) :type data: tuple :param model: An unfit spectrum model :type model: object :param silent: If true, no plots will generate, defaults to False :type silent: bool :return: model that is fit to the data :rtype: object """ wave, flux = data # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d = Data1D(star_name, wave, flux) # ========================================== # Initial guesses # Dataset 1 dplot = DataPlot() dplot.prepare(d) if silent is False: dplot.plot() mplot = ModelPlot() mplot.prepare(d, model) if silent is False: dplot.plot() mplot.overplot() plt.show() # ========================================= # Fitting happens here - don't break please start = time.time() stat = LeastSq() opt = LevMar() opt.verbose = 0 opt.ftol = 1e-15 opt.xtol = 1e-15 opt.gtol = 1e-15 opt.epsfcn = 1e-15 if silent is False: print(opt) vfit = Fit(d, model, stat=stat, method=opt) if silent is False: print(vfit) vres = vfit.fit() if silent is False: print() print() print(vres.format()) # ========================================= # Plotting after fit # Dataset 1 if silent is False: fplot = FitPlot() mplot.prepare(d, model) fplot.prepare(dplot, mplot) fplot.plot() # residual plt.title(star_name) plt.plot(wave, flux - model(wave)) # plt.xaxis(fontsize = ) plt.xlabel("Wavelength (AA)", fontsize=12) plt.ylabel("Flux", fontsize=12) plt.tick_params(axis="both", labelsize=12) if silent is False: duration = time.time() - start print() print("Time taken: " + str(duration)) print() plt.show() if breakdown is True: params = [] cont = model[0] if silent is False: plt.scatter(wave, flux, marker=".", c="black") plt.plot(wave, model(wave), c="C1") for line in model: if line.name[0] != "(": if line.name == "Cont_flux": if silent is False: print(line) plt.plot(wave, line(wave), linestyle="--") else: params.append(line) if silent is False: print() print(line) plt.plot(wave, line(wave) * cont(wave), linestyle="--") plt.show() return model, params return model
def multifit(star_name, data_list, model_list, silent=False): """A function that will fit 2 models to 2 spectra simultaneously. This was created to fit the NaI doublets at ~3300 and ~5890 Angstroms. :param star_name: Name of the target star :type star_name: str :param data_list: List of spectrum data in the form [(wave, flux), (wave, flux),...] :type data_list: tuple :param model_list: A list of unfit spectrum models :type model_list: list :param silent: If true, no plots will generate, defaults to False :type silent: bool :return: models that are fit to the data :rtype: list """ wave1, flux1 = data_list[0] wave2, flux2 = data_list[1] model1 = model_list[0] model2 = model_list[1] name_1 = star_name + " 1" name_2 = star_name + " 2" d1 = Data1D(name_1, wave1, flux1) d2 = Data1D(name_2, wave2, flux2) dall = DataSimulFit("combined", (d1, d2)) mall = SimulFitModel("combined", (model1, model2)) # # ========================================== # # Initial guesses # Dataset 1 dplot1 = DataPlot() dplot1.prepare(d1) if silent is False: dplot1.plot() mplot1 = ModelPlot() mplot1.prepare(d1, model1) if silent is False: dplot1.plot() mplot1.overplot() plt.show() # Dataset 2 dplot2 = DataPlot() dplot2.prepare(d2) if silent is False: dplot2.plot() mplot2 = ModelPlot() mplot2.prepare(d2, model2) if silent is False: dplot2.plot() mplot2.overplot() plt.show() # # ========================================= # # Fitting happens here - don't break please stat = LeastSq() opt = LevMar() opt.verbose = 0 opt.ftol = 1e-15 opt.xtol = 1e-15 opt.gtol = 1e-15 opt.epsfcn = 1e-15 print(opt) vfit = Fit(dall, mall, stat=stat, method=opt) print(vfit) vres = vfit.fit() print() print() print("Did the fit succeed? [bool]") print(vres.succeeded) print() print() print(vres.format()) # # ========================================= # # Plotting after fit if silent is False: # Dataset 1 fplot1 = FitPlot() mplot1.prepare(d1, model1) fplot1.prepare(dplot1, mplot1) fplot1.plot() # residual title = "Data 1" plt.title(title) plt.plot(wave1, flux1 - model1(wave1)) plt.show() # Dataset 2 fplot2 = FitPlot() mplot2.prepare(d2, model2) fplot2.prepare(dplot2, mplot2) fplot2.plot() # residual title = "Data 2" plt.title(title) plt.plot(wave2, flux2 - model2(wave2)) plt.show() # both datasets - no residuals splot = SplitPlot() splot.addplot(fplot1) splot.addplot(fplot2) plt.tight_layout() plt.show() return model_list
mplot.prepare(d, mdl) dplot.plot() mplot.overplot() savefig("model_data_fit2.png") from sherpa.plot import DelchiPlot residplot = DelchiPlot() residplot.prepare(d, mdl, f.stat) residplot.plot() savefig("model_data_delchi.png") d.notice() dump("d.get_filter(format='%d')") from sherpa.plot import FitPlot fitplot = FitPlot() dplot.prepare(d) mplot.prepare(d, mdl) fitplot.prepare(dplot, mplot) fitplot.plot() savefig("model_data_fit_all.png") # do we get an error? Actually, it looks to not be the divide-by-zero # being the problem but list/list instead: # """ residplot.prepare(d, mdl, f.stat) /home/djburke/miniconda2/envs/sherpa410-py35/lib/python3.5/site-packages/sherpa-4.10.0-py3.5-linux-x86_64.egg/sherpa/plot/__init__.py:1128: RuntimeWarning: divide by zero encountered in true_divide return (ylist[0] - ylist[1]) / staterr Traceback (most recent call last):