def classifier_lda_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,gamma=3,num_threads=1): from shogun.Features import RealFeatures, Labels from shogun.Classifier import LDA feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) labels=Labels(label_train_twoclass) lda=LDA(gamma, feats_train, labels) lda.train() lda.get_bias() lda.get_w() lda.set_features(feats_test) lda.apply().get_labels() return lda,lda.apply().get_labels()
def classifier_lda_modular(fm_train_real=traindat, fm_test_real=testdat, label_train_twoclass=label_traindat, gamma=3, num_threads=1): from shogun.Features import RealFeatures, Labels from shogun.Classifier import LDA feats_train = RealFeatures(fm_train_real) feats_test = RealFeatures(fm_test_real) labels = Labels(label_train_twoclass) lda = LDA(gamma, feats_train, labels) lda.train() lda.get_bias() lda.get_w() lda.set_features(feats_test) lda.apply().get_labels() return lda, lda.apply().get_labels()
ROC_evaluation = ROCEvaluation() ROC_evaluation.evaluate(svm.apply(), labels) roc = ROC_evaluation.get_ROC() print roc plot(roc[0], roc[1]) fill_between(roc[0], roc[1], 0, alpha=0.1) text( mean(roc[0]) / 2, mean(roc[1]) / 2, 'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LibSVM (Gaussian kernel, C=%.3f) ROC curve' % svm.get_C1(), size=10) # plot ROC for LDA subplot(224) ROC_evaluation.evaluate(lda.apply(), labels) roc = ROC_evaluation.get_ROC() plot(roc[0], roc[1]) fill_between(roc[0], roc[1], 0, alpha=0.1) text( mean(roc[0]) / 2, mean(roc[1]) / 2, 'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LDA (gamma=%.3f) ROC curve' % lda.get_gamma(), size=10) connect('key_press_event', util.quit) show()
grid(True) title('Data',size=10) # plot ROC for SVM subplot(223) ROC_evaluation=ROCEvaluation() ROC_evaluation.evaluate(svm.apply(),labels) roc = ROC_evaluation.get_ROC() print roc plot(roc[0], roc[1]) fill_between(roc[0],roc[1],0,alpha=0.1) text(mean(roc[0])/2,mean(roc[1])/2,'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LibSVM (Gaussian kernel, C=%.3f) ROC curve' % svm.get_C1(),size=10) # plot ROC for LDA subplot(224) ROC_evaluation.evaluate(lda.apply(),labels) roc = ROC_evaluation.get_ROC() plot(roc[0], roc[1]) fill_between(roc[0],roc[1],0,alpha=0.1) text(mean(roc[0])/2,mean(roc[1])/2,'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LDA (gamma=%.3f) ROC curve' % lda.get_gamma(),size=10) connect('key_press_event', util.quit) show()