def modelselection_grid_search_linear_modular(traindat=traindat,
                                              label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import ContingencyTableEvaluation, ACCURACY
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.ModelSelection import GridSearchModelSelection
    from shogun.ModelSelection import ModelSelectionParameters, R_EXP
    from shogun.ModelSelection import ParameterCombination
    from shogun.Features import Labels
    from shogun.Features import RealFeatures
    from shogun.Classifier import LibLinear, L2R_L2LOSS_SVC

    # build parameter tree to select C1 and C2
    param_tree_root = ModelSelectionParameters()
    c1 = ModelSelectionParameters("C1")
    param_tree_root.append_child(c1)
    c1.build_values(-2.0, 2.0, R_EXP)

    c2 = ModelSelectionParameters("C2")
    param_tree_root.append_child(c2)
    c2.build_values(-2.0, 2.0, R_EXP)

    # training data
    features = RealFeatures(traindat)
    labels = Labels(label_traindat)

    # classifier
    classifier = LibLinear(L2R_L2LOSS_SVC)

    # print all parameter available for modelselection
    # Dont worry if yours is not included but, write to the mailing list
    classifier.print_modsel_params()

    # splitting strategy for cross-validation
    splitting_strategy = StratifiedCrossValidationSplitting(labels, 10)

    # evaluation method
    evaluation_criterium = ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation = CrossValidation(classifier, features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)

    # model selection instance
    model_selection = GridSearchModelSelection(param_tree_root,
                                               cross_validation)

    # perform model selection with selected methods
    #print "performing model selection of"
    #param_tree_root.print_tree()
    best_parameters = model_selection.select_model()

    # print best parameters
    #print "best parameters:"
    #best_parameters.print_tree()

    # apply them and print result
    best_parameters.apply_to_machine(classifier)
    result = cross_validation.evaluate()
Example #2
0
def modelselection_grid_search_kernel():
    num_subsets = 3
    num_vectors = 20
    dim_vectors = 3

    # create some (non-sense) data
    matrix = rand(dim_vectors, num_vectors)

    # create num_feautres 2-dimensional vectors
    features = RealFeatures()
    features.set_feature_matrix(matrix)

    # create labels, two classes
    labels = Labels(num_vectors)
    for i in range(num_vectors):
        labels.set_label(i, 1 if i % 2 == 0 else -1)

    # create svm
    classifier = LibSVM()

    # splitting strategy
    splitting_strategy = StratifiedCrossValidationSplitting(
        labels, num_subsets)

    # accuracy evaluation
    evaluation_criterion = ContingencyTableEvaluation(ACCURACY)

    # cross validation class for evaluation in model selection
    cross = CrossValidation(classifier, features, labels, splitting_strategy,
                            evaluation_criterion)
    cross.set_num_runs(1)

    # print all parameter available for modelselection
    # Dont worry if yours is not included, simply write to the mailing list
    classifier.print_modsel_params()

    # model parameter selection
    param_tree = create_param_tree()
    param_tree.print_tree()

    grid_search = GridSearchModelSelection(param_tree, cross)

    print_state = True
    best_combination = grid_search.select_model(print_state)
    print("best parameter(s):")
    best_combination.print_tree()

    best_combination.apply_to_machine(classifier)

    # larger number of runs to have tighter confidence intervals
    cross.set_num_runs(10)
    cross.set_conf_int_alpha(0.01)
    result = cross.evaluate()
    print("result: ")
    result.print_result()

    return 0
Example #3
0
def evaluation_cross_validation_mkl_weight_storage(traindat=traindat, label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import CrossValidationPrintOutput
    from shogun.Evaluation import CrossValidationMKLStorage
    from shogun.Evaluation import ContingencyTableEvaluation, ACCURACY
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.Features import BinaryLabels
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Classifier import LibSVM, MKLClassification
    from shogun.Mathematics import Statistics

    # training data, combined features all on same data
    features=RealFeatures(traindat)
    comb_features=CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels=BinaryLabels(label_traindat)
    
    # kernel, different Gaussians combined
    kernel=CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm=MKLClassification(LibSVM());
    svm.set_interleaved_optimization_enabled(False);
    svm.set_kernel(kernel);

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy=StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium=ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation=CrossValidation(svm, comb_features, labels,
        splitting_strategy, evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    mkl_storage=CrossValidationMKLStorage()
    cross_validation.add_cross_validation_output(mkl_storage)
    cross_validation.set_num_runs(3)
    
    # perform cross-validation
    result=cross_validation.evaluate()

    # print mkl weights
    weights=mkl_storage.get_mkl_weights()
Example #4
0
def modelselection_grid_search_kernel (num_subsets, num_vectors, dim_vectors):
	# init seed for reproducability
	Math.init_random(1)
	random.seed(1);
	
	# create some (non-sense) data
	matrix=random.rand(dim_vectors, num_vectors)

	# create num_feautres 2-dimensional vectors
	features=RealFeatures()
	features.set_feature_matrix(matrix)

	# create labels, two classes
	labels=BinaryLabels(num_vectors)
	for i in range(num_vectors):
		labels.set_label(i, 1 if i%2==0 else -1)

	# create svm
	classifier=LibSVM()

	# splitting strategy
	splitting_strategy=StratifiedCrossValidationSplitting(labels, num_subsets)

	# accuracy evaluation
	evaluation_criterion=ContingencyTableEvaluation(ACCURACY)

	# cross validation class for evaluation in model selection
	cross=CrossValidation(classifier, features, labels, splitting_strategy, evaluation_criterion)
	cross.set_num_runs(1)

	# print all parameter available for modelselection
	# Dont worry if yours is not included, simply write to the mailing list
	#classifier.print_modsel_params()

	# model parameter selection
	param_tree=create_param_tree()
	#param_tree.print_tree()

	grid_search=GridSearchModelSelection(param_tree, cross)

	print_state=False
	best_combination=grid_search.select_model(print_state)
	#print("best parameter(s):")
	#best_combination.print_tree()

	best_combination.apply_to_machine(classifier)

	# larger number of runs to have tighter confidence intervals
	cross.set_num_runs(10)
	cross.set_conf_int_alpha(0.01)
	result=cross.evaluate()
	casted=CrossValidationResult.obtain_from_generic(result);
	#print "result mean:", casted.mean

	return classifier,result,casted.mean
Example #5
0
def evaluation_cross_validation_classification(traindat=traindat,
                                               label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import ContingencyTableEvaluation, ACCURACY
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.Features import Labels
    from shogun.Features import RealFeatures
    from shogun.Classifier import LibLinear, L2R_L2LOSS_SVC

    # training data
    features = RealFeatures(traindat)
    labels = Labels(label_traindat)

    # classifier
    classifier = LibLinear(L2R_L2LOSS_SVC)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy = StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = ContingencyTableEvaluation(ACCURACY)

    # cross-validation instance
    cross_validation = CrossValidation(classifier, features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)

    # (optional) repeat x-val 10 times
    cross_validation.set_num_runs(10)

    # (optional) request 95% confidence intervals for results (not actually needed
    # for this toy example)
    cross_validation.set_conf_int_alpha(0.05)

    # perform cross-validation and print results
    result = cross_validation.evaluate()
    print "mean:", result.mean
    if result.has_conf_int:
        print "[", result.conf_int_low, ",", result.conf_int_up, "] with alpha=", result.conf_int_alpha
Example #6
0
def evaluation_cross_validation_multiclass_storage(
        traindat=traindat, label_traindat=label_traindat):
    from shogun.Evaluation import CrossValidation, CrossValidationResult
    from shogun.Evaluation import CrossValidationPrintOutput
    from shogun.Evaluation import CrossValidationMKLStorage, CrossValidationMulticlassStorage
    from shogun.Evaluation import MulticlassAccuracy, F1Measure
    from shogun.Evaluation import StratifiedCrossValidationSplitting
    from shogun.Features import MulticlassLabels
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Classifier import MKLMulticlass
    from shogun.Mathematics import Statistics, MSG_DEBUG

    # training data, combined features all on same data
    features = RealFeatures(traindat)
    comb_features = CombinedFeatures()
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    comb_features.append_feature_obj(features)
    labels = MulticlassLabels(label_traindat)

    # kernel, different Gaussians combined
    kernel = CombinedKernel()
    kernel.append_kernel(GaussianKernel(10, 0.1))
    kernel.append_kernel(GaussianKernel(10, 1))
    kernel.append_kernel(GaussianKernel(10, 2))

    # create mkl using libsvm, due to a mem-bug, interleaved is not possible
    svm = MKLMulticlass(1.0, kernel, labels)
    svm.set_kernel(kernel)

    # splitting strategy for 5 fold cross-validation (for classification its better
    # to use "StratifiedCrossValidation", but the standard
    # "StratifiedCrossValidationSplitting" is also available
    splitting_strategy = StratifiedCrossValidationSplitting(labels, 5)

    # evaluation method
    evaluation_criterium = MulticlassAccuracy()

    # cross-validation instance
    cross_validation = CrossValidation(svm, comb_features, labels,
                                       splitting_strategy,
                                       evaluation_criterium)
    cross_validation.set_autolock(False)

    # append cross vlaidation output classes
    #cross_validation.add_cross_validation_output(CrossValidationPrintOutput())
    #mkl_storage=CrossValidationMKLStorage()
    #cross_validation.add_cross_validation_output(mkl_storage)
    multiclass_storage = CrossValidationMulticlassStorage()
    multiclass_storage.append_binary_evaluation(F1Measure())
    cross_validation.add_cross_validation_output(multiclass_storage)
    cross_validation.set_num_runs(3)

    # perform cross-validation
    result = cross_validation.evaluate()

    roc_0_0_0 = multiclass_storage.get_fold_ROC(0, 0, 0)
    #print roc_0_0_0
    auc_0_0_0 = multiclass_storage.get_fold_evaluation_result(0, 0, 0, 0)
    #print auc_0_0_0
    return roc_0_0_0, auc_0_0_0