def kernel_distantsegments_modular (fm_train_dna=traindat,fm_test_dna=testdat,delta=5, theta=5): from shogun.Features import StringCharFeatures, DNA from shogun.Kernel import DistantSegmentsKernel feats_train=StringCharFeatures(fm_train_dna, DNA) feats_test=StringCharFeatures(fm_test_dna, DNA) kernel=DistantSegmentsKernel(feats_train, feats_train, 10, delta, theta) km_train=kernel.get_kernel_matrix() kernel.init(feats_train, feats_test) km_test=kernel.get_kernel_matrix() return km_train, km_test, kernel
def kernel_distantsegments_modular(fm_train_dna=traindat, fm_test_dna=testdat, delta=5, theta=5): from shogun.Features import StringCharFeatures, DNA from shogun.Kernel import DistantSegmentsKernel feats_train = StringCharFeatures(fm_train_dna, DNA) feats_test = StringCharFeatures(fm_test_dna, DNA) kernel = DistantSegmentsKernel(feats_train, feats_train, 10, delta, theta) km_train = kernel.get_kernel_matrix() kernel.init(feats_train, feats_test) km_test = kernel.get_kernel_matrix() return km_train, km_test, kernel
def modelselection_parameter_tree_modular(dummy): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root = ModelSelectionParameters() combinations = root.get_combinations() combinations.get_num_elements() c = ModelSelectionParameters('C') root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel = PowerKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #power_kernel.print_modsel_params() param_power_kernel = ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree = ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1 = MinkowskiMetric(10) # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #metric1.print_modsel_params() param_power_kernel_metric1 = ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k = ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel = GaussianKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #gaussian_kernel.print_modsel_params() param_gaussian_kernel = ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width = ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel = DistantSegmentsKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #ds_kernel.print_modsel_params() param_ds_kernel = ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta = ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta = ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) # root.print_tree() combinations = root.get_combinations() # for i in range(combinations.get_num_elements()): # combinations.get_element(i).print_tree() return
def modelselection_parameter_tree_modular(): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.ModelSelection import DynamicParameterCombinationArray from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root = ModelSelectionParameters() combinations = root.get_combinations() combinations.get_num_elements() c = ModelSelectionParameters('C') root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel = PowerKernel() param_power_kernel = ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree = ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1 = MinkowskiMetric(10) param_power_kernel_metric1 = ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k = ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel = GaussianKernel() param_gaussian_kernel = ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width = ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel = DistantSegmentsKernel() param_ds_kernel = ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta = ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta = ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) root.print_tree() combinations = root.get_combinations() for i in range(combinations.get_num_elements()): combinations.get_element(i).print_tree() return
def modelselection_parameter_tree_modular(dummy): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.ModelSelection import DynamicParameterCombinationArray from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root=ModelSelectionParameters() combinations=root.get_combinations() combinations.get_num_elements() c=ModelSelectionParameters('C'); root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel=PowerKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list power_kernel.print_modsel_params() param_power_kernel=ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree=ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1=MinkowskiMetric(10) # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list metric1.print_modsel_params() param_power_kernel_metric1=ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k=ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel=GaussianKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list gaussian_kernel.print_modsel_params() param_gaussian_kernel=ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width=ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel=DistantSegmentsKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list ds_kernel.print_modsel_params() param_ds_kernel=ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta=ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta=ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) root.print_tree() combinations=root.get_combinations() for i in range(combinations.get_num_elements()): combinations.get_element(i).print_tree() return