Example #1
0
def multiclass_c45classifiertree(train=traindat,
                                 test=testdat,
                                 labels=label_traindat,
                                 ft=feattypes):
    try:
        from shogun import RealFeatures, MulticlassLabels, CSVFile, C45ClassifierTree
        from numpy import random, int32
    except ImportError:
        print("Could not import Shogun and/or numpy modules")
        return

    # wrap features and labels into Shogun objects
    feats_train = RealFeatures(CSVFile(train))
    feats_test = RealFeatures(CSVFile(test))
    train_labels = MulticlassLabels(CSVFile(labels))

    # divide train dataset into training and validation subsets in the ratio 2/3 to 1/3
    subset = int32(random.permutation(feats_train.get_num_vectors()))
    vsubset = subset[1:int(subset.size / 3)]
    trsubset = subset[1 + int(subset.size / 3):subset.size]

    # C4.5 Tree formation using training subset
    train_labels.add_subset(trsubset)
    feats_train.add_subset(trsubset)

    c = C45ClassifierTree()
    c.set_labels(train_labels)
    c.set_feature_types(ft)
    c.train(feats_train)

    train_labels.remove_subset()
    feats_train.remove_subset()

    # prune tree using validation subset
    train_labels.add_subset(vsubset)
    feats_train.add_subset(vsubset)

    c.prune_tree(feats_train, train_labels)

    train_labels.remove_subset()
    feats_train.remove_subset()

    # Classify test data
    output = c.apply_multiclass(feats_test).get_labels()
    output_certainty = c.get_certainty_vector()

    return c, output, output_certainty
Example #2
0
def stochasticgbmachine(train=traindat,
                        train_labels=label_traindat,
                        ft=feat_types):
    try:
        from shogun import RealFeatures, RegressionLabels, CSVFile, CARTree, StochasticGBMachine, SquaredLoss
    except ImportError:
        print("Could not import Shogun modules")
        return

    # wrap features and labels into Shogun objects
    feats = RealFeatures(CSVFile(train))
    labels = RegressionLabels(CSVFile(train_labels))

    # divide into training (90%) and test dataset (10%)
    p = np.random.permutation(labels.get_num_labels())
    num = labels.get_num_labels() * 0.9

    cart = CARTree()
    cart.set_feature_types(ft)
    cart.set_max_depth(1)
    loss = SquaredLoss()
    s = StochasticGBMachine(cart, loss, 500, 0.01, 0.6)

    # train
    feats.add_subset(np.int32(p[0:int(num)]))
    labels.add_subset(np.int32(p[0:int(num)]))
    s.set_labels(labels)
    s.train(feats)
    feats.remove_subset()
    labels.remove_subset()

    # apply
    feats.add_subset(np.int32(p[int(num):len(p)]))
    labels.add_subset(np.int32(p[int(num):len(p)]))
    output = s.apply_regression(feats)

    feats.remove_subset()
    labels.remove_subset()

    return s, output
def stochasticgbmachine(train=traindat,train_labels=label_traindat,ft=feat_types):
	try:
		from shogun import RealFeatures, RegressionLabels, CSVFile, CARTree, StochasticGBMachine, SquaredLoss
	except ImportError:
		print("Could not import Shogun modules")
		return

	# wrap features and labels into Shogun objects
	feats=RealFeatures(CSVFile(train))
	labels=RegressionLabels(CSVFile(train_labels))

	# divide into training (90%) and test dataset (10%)
	p=np.random.permutation(labels.get_num_labels())
	num=labels.get_num_labels()*0.9

	cart=CARTree()
	cart.set_feature_types(ft)
	cart.set_max_depth(1)
	loss=SquaredLoss()
	s=StochasticGBMachine(cart,loss,500,0.01,0.6)

	# train
	feats.add_subset(np.int32(p[0:int(num)]))
	labels.add_subset(np.int32(p[0:int(num)]))
	s.set_labels(labels)
	s.train(feats)
	feats.remove_subset()
	labels.remove_subset()

	# apply
	feats.add_subset(np.int32(p[int(num):len(p)]))
	labels.add_subset(np.int32(p[int(num):len(p)]))
	output=s.apply_regression(feats)

	feats.remove_subset()
	labels.remove_subset()

	return s,output
Example #4
0
def hsic_graphical():
	# parameters, change to get different results
	m=250
	difference=3

	# setting the angle lower makes a harder test
	angle=pi/30

	# number of samples taken from null and alternative distribution
	num_null_samples=500

	# use data generator class to produce example data
	data=DataGenerator.generate_sym_mix_gauss(m,difference,angle)

	# create shogun feature representation
	features_x=RealFeatures(array([data[0]]))
	features_y=RealFeatures(array([data[1]]))

	# compute median data distance in order to use for Gaussian kernel width
	# 0.5*median_distance normally (factor two in Gaussian kernel)
	# However, shoguns kernel width is different to usual parametrization
	# Therefore 0.5*2*median_distance^2
	# Use a subset of data for that, only 200 elements. Median is stable
	subset=int32(array([x for x in range(features_x.get_num_vectors())])) # numpy
	subset=random.permutation(subset) # numpy permutation
	subset=subset[0:200]
	features_x.add_subset(subset)
	dist=EuclideanDistance(features_x, features_x)
	distances=dist.get_distance_matrix()
	features_x.remove_subset()
	median_distance=np.median(distances)
	sigma_x=median_distance**2
	features_y.add_subset(subset)
	dist=EuclideanDistance(features_y, features_y)
	distances=dist.get_distance_matrix()
	features_y.remove_subset()
	median_distance=np.median(distances)
	sigma_y=median_distance**2
	print "median distance for Gaussian kernel on x:", sigma_x
	print "median distance for Gaussian kernel on y:", sigma_y
	kernel_x=GaussianKernel(10,sigma_x)
	kernel_y=GaussianKernel(10,sigma_y)

	# create hsic instance. Note that this is a convienience constructor which copies
	# feature data. features_x and features_y are not these used in hsic.
	# This is only for user-friendlyness. Usually, its ok to do this.
	# Below, the alternative distribution is sampled, which means
	# that new feature objects have to be created in each iteration (slow)
	# However, normally, the alternative distribution is not sampled
	hsic=HSIC(kernel_x,kernel_y,features_x,features_y)

	# sample alternative distribution
	alt_samples=zeros(num_null_samples)
	for i in range(len(alt_samples)):
		data=DataGenerator.generate_sym_mix_gauss(m,difference,angle)
		features_x.set_feature_matrix(array([data[0]]))
		features_y.set_feature_matrix(array([data[1]]))

		# re-create hsic instance everytime since feature objects are copied due to
		# useage of convienience constructor
		hsic=HSIC(kernel_x,kernel_y,features_x,features_y)
		alt_samples[i]=hsic.compute_statistic()

	# sample from null distribution
	# permutation, biased statistic
	hsic.set_null_approximation_method(PERMUTATION)
	hsic.set_num_null_samples(num_null_samples)
	null_samples_boot=hsic.sample_null()

	# fit gamma distribution, biased statistic
	hsic.set_null_approximation_method(HSIC_GAMMA)
	gamma_params=hsic.fit_null_gamma()
	# sample gamma with parameters
	null_samples_gamma=array([gamma(gamma_params[0], gamma_params[1]) for _ in range(num_null_samples)])

	# plot
	figure()

	# plot data x and y
	subplot(2,2,1)
	gca().xaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks
	gca().yaxis.set_major_locator( MaxNLocator(nbins = 4) ) # reduce number of x-ticks
	grid(True)
	plot(data[0], data[1], 'o')
	title('Data, rotation=$\pi$/'+str(1/angle*pi)+'\nm='+str(m))
	xlabel('$x$')
	ylabel('$y$')

	# compute threshold for test level
	alpha=0.05
	null_samples_boot.sort()
	null_samples_gamma.sort()
	thresh_boot=null_samples_boot[floor(len(null_samples_boot)*(1-alpha))];
	thresh_gamma=null_samples_gamma[floor(len(null_samples_gamma)*(1-alpha))];

	type_one_error_boot=sum(null_samples_boot<thresh_boot)/float(num_null_samples)
	type_one_error_gamma=sum(null_samples_gamma<thresh_boot)/float(num_null_samples)

	# plot alternative distribution with threshold
	subplot(2,2,2)
	gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	grid(True)
	hist(alt_samples, 20, normed=True);
	axvline(thresh_boot, 0, 1, linewidth=2, color='red')
	type_two_error=sum(alt_samples<thresh_boot)/float(num_null_samples)
	title('Alternative Dist.\n' + 'Type II error is ' + str(type_two_error))

	# compute range for all null distribution histograms
	hist_range=[min([min(null_samples_boot), min(null_samples_gamma)]), max([max(null_samples_boot), max(null_samples_gamma)])]

	# plot null distribution with threshold
	subplot(2,2,3)
	gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	grid(True)
	hist(null_samples_boot, 20, range=hist_range, normed=True);
	axvline(thresh_boot, 0, 1, linewidth=2, color='red')
	title('Sampled Null Dist.\n' + 'Type I error is '  + str(type_one_error_boot))

	# plot null distribution gamma
	subplot(2,2,4)
	gca().xaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	gca().yaxis.set_major_locator( MaxNLocator(nbins = 3) ) # reduce number of x-ticks
	grid(True)
	hist(null_samples_gamma, 20, range=hist_range, normed=True);
	axvline(thresh_gamma, 0, 1, linewidth=2, color='red')
	title('Null Dist. Gamma\nType I error is '  + str(type_one_error_gamma))
	grid(True)

	# pull plots a bit apart
	subplots_adjust(hspace=0.5)
	subplots_adjust(wspace=0.5)