Example #1
0
def main():
    rank, world_size = dist_init()
    logger.info("init done")

    # load cfg
    cfg.merge_from_file(args.cfg)

    if rank == 0:
        if not os.path.exists(cfg.TRAIN.LOG_DIR):
            os.makedirs(cfg.TRAIN.LOG_DIR)
        init_log('global', logging.INFO)
        if cfg.TRAIN.LOG_DIR:
            add_file_handler('global',
                             os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'),
                             logging.INFO)

        logger.info("Version Information: \n{}\n".format(commit()))
        logger.info("config \n{}".format(json.dumps(cfg, indent=4)))

    # create model
    model = ModelBuilder().cuda().train()
    dist_model = DistModule(model)

    # load pretrained backbone weights
    if cfg.BACKBONE.PRETRAINED:
        cur_path = os.path.dirname(os.path.realpath(__file__))
        backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED)
        load_pretrain(model.backbone, backbone_path)

    # create tensorboard writer
    if rank == 0 and cfg.TRAIN.LOG_DIR:
        tb_writer = SummaryWriter(cfg.TRAIN.LOG_DIR)
    else:
        tb_writer = None

    # build dataset loader
    train_loader = build_data_loader()

    # build optimizer and lr_scheduler
    optimizer, lr_scheduler = build_opt_lr(dist_model.module,
                                           cfg.TRAIN.START_EPOCH)

    # resume training
    if cfg.TRAIN.RESUME:
        logger.info("resume from {}".format(cfg.TRAIN.RESUME))
        assert os.path.isfile(cfg.TRAIN.RESUME), \
            '{} is not a valid file.'.format(cfg.TRAIN.RESUME)
        model, optimizer, cfg.TRAIN.START_EPOCH = \
            restore_from(model, optimizer, cfg.TRAIN.RESUME)
        dist_model = DistModule(model)

    logger.info(lr_scheduler)
    logger.info("model prepare done")

    # start training
    train(train_loader, dist_model, optimizer, lr_scheduler, tb_writer)
Example #2
0
def main():
    # load config
    cfg.merge_from_file(args.config)
    cfg.CUDA = torch.cuda.is_available() and cfg.CUDA
    device = torch.device('cuda' if cfg.CUDA else 'cpu')

    # create model
    model = ModelBuilder()

    # load model
    # model.load_state_dict(torch.load(args.snapshot,
    #     map_location=lambda storage, loc: storage.cpu()))
    # model.eval().to(device)

    # load model
    model = load_pretrain(model, args.snapshot).cuda().eval()

    # build tracker
    tracker = build_tracker(model)

    first_frame = True
    if args.video_name:
        video_name = args.video_name.split('/')[-1].split('.')[0]
    else:
        video_name = 'webcam'
    cv2.namedWindow(video_name, cv2.WND_PROP_FULLSCREEN)
    for frame in get_frames(args.video_name):
        if first_frame:
            try:
                init_rect = cv2.selectROI(video_name, frame, False, False)
            except:
                exit()
            tracker.init(frame, init_rect)
            first_frame = False
        else:
            outputs = tracker.track(frame)
            if 'polygon' in outputs:
                polygon = np.array(outputs['polygon']).astype(np.int32)
                cv2.polylines(frame, [polygon.reshape((-1, 1, 2))], True,
                              (0, 255, 0), 3)
                mask = ((outputs['mask'] > cfg.TRACK.MASK_THERSHOLD) * 255)
                mask = mask.astype(np.uint8)
                mask = np.stack([mask, mask * 255, mask]).transpose(1, 2, 0)
                frame = cv2.addWeighted(frame, 0.77, mask, 0.23, -1)
            else:
                bbox = list(map(int, outputs['bbox']))
                cv2.rectangle(frame, (bbox[0], bbox[1]),
                              (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                              (0, 255, 0), 3)
            cv2.imshow(video_name, frame)
            cv2.waitKey(40)
Example #3
0
def main():

    args.tracker_name = args.snapshot.split('/')[-1].split('.')[0]

    # load config
    cfg.merge_from_file(args.config)

    #cur_dir = os.path.dirname(os.path.realpath(__file__))

    dataset_root = os.path.join('./datasets', args.dataset)

    # create model
    model = ModelBuilder()

    # load model
    model = load_pretrain(model, args.snapshot).cuda().eval()

    # build tracker
    tracker = build_tracker(model)

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root,
                                            load_img=False)
    #model_name = args.snapshot.split('/')[-1].split('.')[0]
    total_lost = 0
    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        # restart tracking
        #   for v_idx, video in enumerate(dataset):

        for video in tqdm(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [
                        gt_bbox[0], gt_bbox[1], gt_bbox[0],
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1,
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1, gt_bbox[1]
                    ]
                tic = cv2.getTickCount()
                if idx == frame_counter:
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w,
                                h]  #[topx,topy,w,h]
                    tracker.init(img, gt_bbox_)
                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    outputs = tracker.track(img)
                    pred_bbox = outputs['bbox']
                    if cfg.MASK.MASK:
                        pred_bbox = outputs['polygon']
                    overlap = vot_overlap(pred_bbox, gt_bbox,
                                          (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5  # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(
                        img, [np.array(gt_bbox, np.int).reshape(
                            (-1, 1, 2))], True, (0, 255, 0), 3)
                    if cfg.MASK.MASK:
                        cv2.polylines(
                            img,
                            [np.array(pred_bbox, np.int).reshape(
                                (-1, 1, 2))], True, (0, 255, 255), 3)
                    else:
                        bbox = list(map(int, pred_bbox))
                        cv2.rectangle(img, (bbox[0], bbox[1]),
                                      (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                                      (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join('results', args.dataset,
                                      args.tracker_name, 'baseline',
                                      video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path,
                                       '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i)
                                          for i in x]) + '\n')
            # print('({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
            #         v_idx+1, video.name, toc, idx / toc, lost_number))
            total_lost += lost_number
        # print("{:s} total lost: {:d}".format(args.tracker_name, total_lost))
    else:
        # OPE tracking
        #for v_idx, video in tqdm(enumerate(dataset)):
        for video in tqdm(enumerate(dataset)):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            toc = 0
            pred_bboxes = []
            scores = []
            track_times = []
            for idx, (img, gt_bbox) in enumerate(video[1]):
                tic = cv2.getTickCount()
                if idx == 0:
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w,
                                h]  #[topx,topy,w,h]
                    tracker.init(img, gt_bbox_)
                    pred_bbox = gt_bbox_
                    scores.append(None)
                    if 'VOT2018-LT' == args.dataset:
                        pred_bboxes.append([1])
                    else:
                        pred_bboxes.append(pred_bbox)
                else:
                    outputs = tracker.track(img)
                    pred_bbox = outputs['bbox']
                    pred_bboxes.append(pred_bbox)
                    scores.append(outputs['best_score'])
                toc += cv2.getTickCount() - tic
                track_times.append(
                    (cv2.getTickCount() - tic) / cv2.getTickFrequency())
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > 0:
                    gt_bbox = list(map(int, gt_bbox))
                    pred_bbox = list(map(int, pred_bbox))
                    cv2.rectangle(
                        img, (gt_bbox[0], gt_bbox[1]),
                        (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                        (0, 255, 0), 3)
                    cv2.rectangle(img, (pred_bbox[0], pred_bbox[1]),
                                  (pred_bbox[0] + pred_bbox[2],
                                   pred_bbox[1] + pred_bbox[3]), (0, 255, 255),
                                  3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.imshow(video[1].name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()

            # save results
            if 'VOT2018-LT' == args.dataset:
                video_path = os.path.join('results', args.dataset,
                                          args.tracker_name, 'longterm',
                                          video.name)
                if not os.path.isdir(video_path):
                    os.makedirs(video_path)
                result_path = os.path.join(video_path,
                                           '{}_001.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
                result_path = os.path.join(
                    video_path, '{}_001_confidence.value'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in scores:
                        f.write('\n') if x is None else f.write(
                            "{:.6f}\n".format(x))
                result_path = os.path.join(video_path,
                                           '{}_time.txt'.format(video.name))
                with open(result_path, 'w') as f:
                    for x in track_times:
                        f.write("{:.6f}\n".format(x))
            elif 'GOT-10k' == args.dataset:
                video_path = os.path.join('results', args.dataset,
                                          args.tracker_name, video[1].name)
                if not os.path.isdir(video_path):
                    os.makedirs(video_path)
                result_path = os.path.join(video_path,
                                           '{}_001.txt'.format(video[1].name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
                result_path = os.path.join(video_path,
                                           '{}_time.txt'.format(video[1].name))
                with open(result_path, 'w') as f:
                    for x in track_times:
                        f.write("{:.6f}\n".format(x))
            else:
                model_path = os.path.join('results', args.dataset,
                                          args.tracker_name)
                if not os.path.isdir(model_path):
                    os.makedirs(model_path)
                result_path = os.path.join(model_path,
                                           '{}.txt'.format(video[1].name))
                with open(result_path, 'w') as f:
                    for x in pred_bboxes:
                        f.write(','.join([str(i) for i in x]) + '\n')
            # print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            #     v_idx+1, video.name, toc, idx / toc))
    print(args.snapshot.split('/')[-1])
    evaluate(args)
Example #4
0
    cfg.merge_from_file(args.config)

    cur_dir = os.path.dirname(os.path.realpath(__file__))
    dataset_root = os.path.join(cur_dir, '../datasets', args.dataset)

    # create  dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root,
                                            load_img=False)

    # create model
    model = ModelBuilder()

    # load model
    model = load_pretrain(model, args.snapshot).cuda().eval()

    # build tracker
    tracker = build_tracker(model)

    model_name = args.snapshot.split('/')[-1].split('.')[0]
    benchmark_path = os.path.join('hp_search_result', args.dataset)
    seqs = list(range(len(dataset)))
    np.random.shuffle(seqs)
    for idx in seqs:
        video = dataset[idx]
        # load image
        video.load_img()
        np.random.shuffle(args.penalty_k)
        np.random.shuffle(args.window_influence)
        np.random.shuffle(args.lr)
Example #5
0
def main():
    #(1)
    #rank, world_size = dist_init()
    rank = 0

    logger.info("init done")

    # load cfg
    cfg.merge_from_file(args.cfg)

    #rank=0代表是单节点运行
    if rank == 0:
        if not os.path.exists(cfg.TRAIN.LOG_DIR):
            os.makedirs(cfg.TRAIN.LOG_DIR)
        init_log('global', logging.INFO)
        if cfg.TRAIN.LOG_DIR:
            add_file_handler('global',
                             os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'),
                             logging.INFO)

        logger.info("Version Information: \n{}\n".format(commit()))
        logger.info("config \n{}".format(json.dumps(cfg, indent=4)))

    #(2)
    # create model
    model = ModelBuilder().cuda().train()

    dist_model = nn.DataParallel(model, device_ids=[0, 1])

    #dist_model = DistModule(model)

    # load pretrained backbone weights
    if cfg.BACKBONE.PRETRAINED:
        cur_path = os.path.dirname(os.path.realpath(__file__))
        backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED)
        load_pretrain(model.backbone, backbone_path)

    # create tensorboard writer
    if rank == 0 and cfg.TRAIN.LOG_DIR:
        tb_writer = SummaryWriter(cfg.TRAIN.LOG_DIR)
    else:
        tb_writer = None

    # build dataset loader 加载数据集
    train_loader = build_data_loader()

    # build optimizer and lr_scheduler
    optimizer, lr_scheduler = build_opt_lr(dist_model.module,
                                           cfg.TRAIN.START_EPOCH)

    # resume training
    if cfg.TRAIN.RESUME:
        logger.info("resume from {}".format(cfg.TRAIN.RESUME))
        assert os.path.isfile(cfg.TRAIN.RESUME), \
            '{} is not a valid file.'.format(cfg.TRAIN.RESUME)

        # (1) 从某一个checkpoint开始训练
        dist_model, optimizer, cfg.TRAIN.START_EPOCH = \
            restore_from(model, optimizer, cfg.TRAIN.RESUME)

        # (2) 加载预训练模型
        # device = torch.cuda.current_device()
        # ckpt = torch.load(cfg.TRAIN.RESUME, map_location=lambda storage, loc: storage.cuda(device))
        # model.load_state_dict(ckpt, strict=False)

    logger.info(lr_scheduler)
    logger.info("model prepare done")

    # start training
    train(train_loader, dist_model, optimizer, lr_scheduler, tb_writer)