v = bar.velocity() p = bar.p(1) lambda_ = inter.lambda_(1) # time loop while s.hasNextEvent(): s.computeOneStep() dataPlot[k, 0] = s.nextTime() print('time=', dataPlot[k, 0]) dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0]/h dataPlot[k, 4] = lambda_[0] k += 1 s.nextStep() dataPlot.resize(k,5) import matplotlib.pyplot as plt fig_size = [14, 14] plt.rcParams["figure.figsize"] = fig_size plt.subplot(411) plt.title('position') plt.plot(dataPlot[:, 0], dataPlot[:, 1]) plt.grid() plt.subplot(412) plt.title('velocity')
#aLCP.display() dataPlot[k, 0] = aTS.nextTime() # inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = -lambda_[0] # diode F2 voltage dataPlot[k, 5] = -lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] k += 1 aTS.nextStep() # comparison with reference file from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("DiodeBridge.ref")) error = norm(dataPlot[:, 0:6] - ref[:, 0:6]) print("error = ", error) #assert (error < 1e-09) withRef = True if (withPlot): # # plots
dataPlot[0, 4] = lambda_[0] k = 1 # time loop while s.hasNextEvent(): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("result.ref")) if (norm(dataPlot - ref) > 1e-12): print("Warning. The result is rather different from the reference file.") # # plots
dataPlot[0, 2] = processDS.x()[1] dataPlot[0, 3] = processDS.z()[0] dataPlot[0, 4] = processDS.z()[1] # Main loop k = 1 while(processSimulation.hasNextEvent()): processSimulation.computeOneStep() dataPlot[k, 0] = processSimulation.nextTime() dataPlot[k, 1] = processDS.x()[0] dataPlot[k, 2] = processDS.x()[1] dataPlot[k, 3] = processDS.z()[0] dataPlot[k, 4] = processDS.z()[1] k += 1 print processSimulation.nextTime() processSimulation.nextStep() # Resize matrix dataPlot.resize(k, outputSize) # Save to disk savetxt('SMCExampleImplicitOT2-py.dat', dataPlot) # Plot interesting data subplot(411) title('x1') plot(dataPlot[:, 0], dataPlot[:, 1]) grid() subplot(412) title('x2') plot(dataPlot[:, 0], dataPlot[:, 2]) grid() subplot(413) title('u1')
def test_serialization4(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # first_bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization first_bouncingBall.setSimulation(s) first_bouncingBall.initialize() # # save and load data from xml and .dat # from siconos.io.io_base import save, load save(first_bouncingBall, "bouncingBall.xml") bouncingBall = load("bouncingBall.xml") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
def test_bouncing_ball1(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # # save and load data from xml and .dat # try: from siconos.io import save save(bouncingBall, "bouncingBall.xml") save(bouncingBall, "bouncingBall.bin") except: print("Warning : could not import save from siconos.io") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 #print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
dataPlot[k, 1] = q[2] dataPlot[k, 2] = v[2] #if (broadphase.collisionWorld().getDispatcher().getNumManifolds() > 0): if (broadphase.statistics().new_interactions_created + broadphase.statistics().existing_interactions_processed) > 0: if bouncingBox.nonSmoothDynamicalSystem().topology().\ numberOfIndexSet() == 2: index1 = sk.interactions(simulation.indexSet(1)) if (len(index1) == 4): dataPlot[k, 3] = norm(index1[0].lambda_(1)) + \ norm(index1[1].lambda_(1)) + norm(index1[2].lambda_(1)) + \ norm(index1[3].lambda_(1)) k += 1 simulation.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("result_dynamic.ref")) print("norm(dataPlot - ref) = {0}".format(norm(dataPlot - ref))) if (norm(dataPlot - ref) > 1e-11): print("Warning. The result is rather different from the reference file.") # # plots
while (k < N): aTS.computeOneStep() #aLCP.display() dataPlot[k, 0] = aTS.nextTime() # inductor voltage dataPlot[k, 1] = x[0] dataPlot[k, 2] = x[1] dataPlot[k, 3] = x[2] dataPlot[k, 4] = y[0] dataPlot[k, 5] = lambda_[0] k += 1 if k%1000==0: print("step =", k, " < ", N) aTS.nextStep() if (withPlot) : # # plots # subplot(511) title('x1') plot(dataPlot[0:k-1,0], dataPlot[0:k-1,1]) grid() subplot(512) title('x2') plot(dataPlot[0:k-1,0], dataPlot[0:k-1,2]) grid() subplot(513) title('x3')
def test_diode_bridge(): """Build diode bridge model""" # dynamical system bridge_ds = FirstOrderLinearDS(init_state, A) # interaction diode_bridge_relation = FirstOrderLinearTIR(C, B) diode_bridge_relation.setDPtr(D) nslaw = ComplementarityConditionNSL(4) bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1) # Model diode_bridge = Model(t0, total_time, model_title) # add the dynamical system in the non smooth dynamical system diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds) # link the interaction and the dynamical system diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds) # Simulation # (1) OneStepIntegrators theta = 0.5 integrator = EulerMoreauOSI(theta) # (2) Time discretisation time_discretisation = TimeDiscretisation(t0, time_step) # (3) Non smooth problem non_smooth_problem = LCP() # (4) Simulation setup with (1) (2) (3) bridge_simulation = TimeStepping(time_discretisation, integrator, non_smooth_problem) # simulation initialization diode_bridge.setSimulation(bridge_simulation) diode_bridge.initialize() k = 0 h = bridge_simulation.timeStep() # Number of time steps N = (total_time - t0) / h # Get the values to be plotted # ->saved in a matrix dataPlot data_plot = empty([N, 8]) x = bridge_ds.x() print("Initial state : ", x) y = bridge_interaction.y(0) print("First y : ", y) lambda_ = bridge_interaction.lambda_(0) # For the initial time step: # time data_plot[k, 0] = t0 # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = - lambda_[0] # diode F2 voltage data_plot[k, 5] = - lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 while k < N: bridge_simulation.computeOneStep() #non_smooth_problem.display() data_plot[k, 0] = bridge_simulation.nextTime() # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = - lambda_[0] # diode F2 voltage data_plot[k, 5] = - lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 bridge_simulation.nextStep() # # comparison with the reference file # ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref"))) assert norm(data_plot - ref) < 1e-12 return ref, data_plot
def test_diode_bridge(): """Build diode bridge model""" # dynamical system bridge_ds = FirstOrderLinearDS(init_state, A) # interaction diode_bridge_relation = FirstOrderLinearTIR(C, B) diode_bridge_relation.setDPtr(D) nslaw = ComplementarityConditionNSL(4) bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1) # Model diode_bridge = Model(t0, total_time, model_title) # add the dynamical system in the non smooth dynamical system diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds) # link the interaction and the dynamical system diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds) # Simulation # (1) OneStepIntegrators theta = 0.5 integrator = EulerMoreauOSI(theta) integrator.insertDynamicalSystem(bridge_ds) # (2) Time discretisation time_discretisation = TimeDiscretisation(t0, time_step) # (3) Non smooth problem non_smooth_problem = LCP() # (4) Simulation setup with (1) (2) (3) bridge_simulation = TimeStepping(time_discretisation, integrator, non_smooth_problem) # simulation initialization diode_bridge.initialize(bridge_simulation) k = 0 h = bridge_simulation.timeStep() # Number of time steps N = (total_time - t0) / h # Get the values to be plotted # ->saved in a matrix dataPlot data_plot = empty([N, 8]) x = bridge_ds.x() print("Initial state : ", x) y = bridge_interaction.y(0) print("First y : ", y) lambda_ = bridge_interaction.lambda_(0) # For the initial time step: # time data_plot[k, 0] = t0 # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 while k < N: bridge_simulation.computeOneStep() #non_smooth_problem.display() data_plot[k, 0] = bridge_simulation.nextTime() # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 bridge_simulation.nextStep() # # comparison with the reference file # ref = getMatrix( SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref"))) assert norm(data_plot - ref) < 1e-12 return ref, data_plot
def test_smc1(): from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \ TimeStepping, ZeroOrderHoldOSI, TD_EVENT from siconos.control.simulation import ControlManager from siconos.control.sensor import LinearSensor from siconos.control.controller import LinearSMCOT2 from numpy import eye, empty, zeros import numpy as np from math import ceil, sin # Derive our own version of FirstOrderLinearDS class MyFOLDS(FirstOrderLinearDS): def computeb(self, time): t = sin(50*time) # XXX fix this ! u = [t, -t] self.setb(u) # variable declaration ndof = 2 # Number of degrees of freedom of your system t0 = 0.0 # start time T = 1 # end time h = 1.0e-4 # time step for simulation hControl = 1.0e-2 # time step for control Xinit = 1.0 # initial position N = ceil((T-t0)/h + 10) # number of time steps outputSize = 4 # number of variable to store at each time step # Matrix declaration A = zeros((ndof, ndof)) x0 = [Xinit, -Xinit] Brel = np.array([[0], [1]]) sensorC = eye(ndof) sensorD = zeros((ndof, ndof)) Csurface = [[0, 1.0]] # Simple check if h > hControl: print("hControl must be bigger than h") exit(1) # Declaration of the Dynamical System processDS = MyFOLDS(x0, A) # XXX b is not automatically created ... # processDS.setb([0, 0]) # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretization processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI() process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(processSimulation) sens = LinearSensor(processDS, sensorC, sensorD) control.addSensorPtr(sens, tSensor) act = LinearSMCOT2(sens) act.setCsurface(Csurface) act.setB(Brel) control.addActuatorPtr(act, tActuator) # Initialization. process.initialize(processSimulation) control.initialize(process) # This is not working right now # eventsManager = s.eventsManager() # Matrix for data storage dataPlot = empty((3*(N+1), outputSize)) dataPlot[0, 0] = t0 dataPlot[0, 1] = processDS.x()[0] dataPlot[0, 2] = processDS.x()[1] dataPlot[0, 3] = act.u()[0] # Main loop k = 1 while processSimulation.hasNextEvent(): if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT: processSimulation.computeOneStep() dataPlot[k, 0] = processSimulation.nextTime() dataPlot[k, 1] = processDS.x()[0] dataPlot[k, 2] = processDS.x()[1] dataPlot[k, 3] = act.u()[0] k += 1 processSimulation.nextStep() # print processSimulation.nextTime() # Resize matrix dataPlot.resize(k, outputSize)
def test_diodebridge1(): from siconos.kernel import FirstOrderLinearDS, FirstOrderLinearTIR, \ ComplementarityConditionNSL, Interaction,\ Model, EulerMoreauOSI, TimeDiscretisation, LCP, \ TimeStepping from numpy import empty from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm t0 = 0.0 T = 5.0e-3 # Total simulation time h_step = 1.0e-6 # Time step Lvalue = 1e-2 # inductance Cvalue = 1e-6 # capacitance Rvalue = 1e3 # resistance Vinit = 10.0 # initial voltage Modeltitle = "DiodeBridge" # # dynamical system # init_state = [Vinit, 0] A = [[0, -1.0/Cvalue], [1.0/Lvalue, 0 ]] LSDiodeBridge=FirstOrderLinearDS(init_state, A) # # Interactions # C = [[0., 0.], [0, 0.], [-1., 0.], [1., 0.]] D = [[1./Rvalue, 1./Rvalue, -1., 0.], [1./Rvalue, 1./Rvalue, 0., -1.], [1., 0., 0., 0.], [0., 1., 0., 0.]] B = [[0., 0., -1./Cvalue, 1./Cvalue], [0., 0., 0., 0. ]] LTIRDiodeBridge=FirstOrderLinearTIR(C, B) LTIRDiodeBridge.setDPtr(D) LTIRDiodeBridge.display() nslaw=ComplementarityConditionNSL(4) InterDiodeBridge=Interaction(4, nslaw, LTIRDiodeBridge, 1) # # Model # DiodeBridge=Model(t0, T, Modeltitle) # add the dynamical system in the non smooth dynamical system DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(LSDiodeBridge) # link the interaction and the dynamical system DiodeBridge.nonSmoothDynamicalSystem().link(InterDiodeBridge, LSDiodeBridge) # # Simulation # # (1) OneStepIntegrators theta = 0.5 aOSI = EulerMoreauOSI(LSDiodeBridge, theta) # (2) Time discretisation aTiDisc = TimeDiscretisation(t0, h_step) # (3) Non smooth problem aLCP = LCP() # (4) Simulation setup with (1) (2) (3) aTS = TimeStepping(aTiDisc, aOSI, aLCP) # end of model definition # # computation # # simulation initialization DiodeBridge.initialize(aTS) k = 0 h = aTS.timeStep() print("Timestep : ", h) # Number of time steps N = (T-t0)/h print("Number of steps : ", N) # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty([N, 8]) x = LSDiodeBridge.x() print("Initial state : ", x) y = InterDiodeBridge.y(0) print("First y : ", y) lambda_ = InterDiodeBridge.lambda_(0) # For the initial time step: # time dataPlot[k, 0] = t0 # inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = - lambda_[0] # diode F2 voltage dataPlot[k, 5] = - lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] # resistor current dataPlot[k, 7] = y[0] + lambda_[2] k += 1 while (k < N): aTS.computeOneStep() #aLCP.display() dataPlot[k, 0] = aTS.nextTime() # inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = - lambda_[0] # diode F2 voltage dataPlot[k, 5] = - lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] # resistor current dataPlot[k, 7] = y[0] + lambda_[2] k += 1 aTS.nextStep() # # comparison with the reference file # ref = getMatrix(SimpleMatrix(os.path.join(working_dir,"data/diode_bridge.ref"))) print(norm(dataPlot - ref)) assert (norm(dataPlot - ref) < 1e-12) return ref, dataPlot