def P_data(data,m1,b1,m2,b2,σ): x,y=data μ=m1*x+b1 idx=where(x>=23)[0] μ[idx]=m2*x[idx]+b2 distribution=Normal(μ,σ) return sum(distribution(y))
def P_data(data, a0, a1, a2, σ): x, y = data μ = a0 + a1 * x + a2 * x * x # y ~ μ + random distribution = Normal(μ, σ) return sum(distribution(y))
def P_data(data, m, b, σ): x, y = data μ = m * x + b # y ~ μ + random distribution = Normal(μ, σ) return sum(distribution(y))
def P_data(data, m, b, σ): x, y = data μ = m * x + b # y ~ μ + random distribution = Normal(μ, σ) return sum(distribution(y)) # In[7]: data = t, T model = MCMCModel( data, P_data, m=Normal(0, 10), b=Uniform(-100, 100), σ=Jeffreys(), ) # In[8]: for i in range(2): model.run_mcmc(500) model.plot_chains() # In[9]: model.BIC # In[10]:
def P_data(data,C,p,Z,θ0,σ): t,θ=data μ=C*exp(-p*t)/(Z-p)+exp(-Z*t)*(θ0-C/(Z-p)) distribution=Normal(μ,σ) return sum(distribution(θ))
# In[ ]: # In[8]: model=MCMCModel(sim, Z=Normal(5,10), ) model.run_mcmc(500,repeat=4) model.plot_chains() # In[9]: model.plot_distributions() # In[10]: sim.run(0,11)
def P_data(data,μ,σ): x=data distribution=Normal(μ,σ) return sum(distribution(data))
# In[26]: def P_data(data,m,b,σ): x,y=data μ=m*x+b distribution=Normal(μ,σ) return sum(distribution(y)) # In[31]: data=x-1960,y model=MCMCModel(data,P_data, m=Normal(0,10), b=Uniform(-10,10), σ=Jeffreys(), ) # In[34]: model.run_mcmc(500) model.plot_chains() # In[35]:
def P_data(data, m, b, σ): x, y = data μ = m * x + b distribution = Normal(μ, σ) return sum(distribution(y)) # In[8]: data = x, y model = MCMCModel( data, P_data, m=Normal(0, 10), b=Uniform(-10, 10), σ=Jeffreys(), ) # In[9]: for i in range(2): model.run_mcmc(500) model.plot_chains() # In[17]: model.plot_distributions() # In[ ]:
def P_data(data, μ): x = data σ = 0.1 distribution = Normal(μ, σ) return sum(distribution(x))
plot(y, m, '-o') # In[32]: def P_data(data, μ): x = data σ = 0.1 distribution = Normal(μ, σ) return sum(distribution(x)) # In[39]: model = MCMCModel(m, P_data, μ=Normal(0, 20)) # In[40]: model.run_mcmc(500) model.plot_chains() # In[41]: model.plot_distributions() # In[42]: def P_data(data, μ, σ): x = data