Example #1
0
def get_tf_gpu_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                          ranking: DeploymentRanking):
    tf_gpu_characterization = FunctionCharacterization(images.tf_gpu_manifest,
                                                       fet_oracle,
                                                       resource_oracle)

    tf_gpu_function = FunctionDefinition(
        name=images.tf_gpu_function,
        image=images.tf_gpu_manifest,
        characterization=tf_gpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '3', 'device.edgerun.io/accelerator': 'GPU',
                'device.edgerun.io/vram': '2000', })

    tf_gpu_function.requests = Resources.from_str("300Mi", "1000m")
    deployment = FunctionDeployment(
        images.tf_gpu_function,
        {
            images.tf_gpu_manifest: tf_gpu_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.tf_gpu_manifest: 1
    }
    return deployment
Example #2
0
def get_fio_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                       ranking: DeploymentRanking) -> FunctionDeployment:
    fio_characterization = FunctionCharacterization(images.fio_manifest,
                                                    fet_oracle,
                                                    resource_oracle)

    fio_function = FunctionDefinition(
        name=images.fio_function,
        image=images.fio_manifest,
        characterization=fio_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '1'})
    fio_function.requests = Resources.from_str("200Mi", "1000m")
    deployment = FunctionDeployment(
        images.fio_function,
        {
            images.fio_manifest: fio_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.fio_manifest: 1
    }

    return deployment
Example #3
0
def get_speech_inference_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                                    ranking: DeploymentRanking) -> FunctionDeployment:
    speech_inference_gpu_characterization = FunctionCharacterization(images.speech_inference_gpu_manifest, fet_oracle,
                                                                     resource_oracle)
    speech_inference_tflite_characterization = FunctionCharacterization(images.speech_inference_tflite_manifest,
                                                                        fet_oracle, resource_oracle)

    tflite = storage.speech_model_tflite_bucket_item
    data_storage_tflite = {
        'data.skippy.io/receives-from-storage': '48M',
        'data.skippy.io/receives-from-storage/path': f'{storage.speech_bucket}/{tflite.name}',
    }
    gpu = storage.speech_model_gpu_bucket_item
    data_storage_gpu = {
        # this size is without scorer object, which is used to impove accuracy but doesn't seem to affect runtime,
        # scorer weighs around 900M - simple benchmarks in bash have made no difference in runtime
        'data.skippy.io/receives-from-storage': '188M',
        'data.skippy.io/receives-from-storage/path': f'{storage.speech_bucket}/{gpu.name}',

    }

    speech_gpu_function = FunctionDefinition(
        name=images.speech_inference_function,
        image=images.speech_inference_gpu_manifest,
        characterization=speech_inference_gpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '0', 'device.edgerun.io/accelerator': 'GPU',
                'device.edgerun.io/vram': '1500', })

    speech_gpu_function.labels.update(data_storage_gpu)
    speech_gpu_function.requests = Resources.from_str("300Mi", "1000m")
    speech_tflite_function = FunctionDefinition(
        name=images.speech_inference_function,
        image=images.speech_inference_tflite_manifest,
        characterization=speech_inference_tflite_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '1'})

    speech_tflite_function.labels.update(data_storage_tflite)
    speech_tflite_function.requests = Resources.from_str("100Mi", "1000m")
    deployment = FunctionDeployment(
        images.speech_inference_function,
        {
            images.speech_inference_gpu_manifest: speech_gpu_function,
            images.speech_inference_tflite_manifest: speech_tflite_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.speech_inference_tflite_manifest: 1,
        images.speech_inference_gpu_manifest: 1
    }

    return deployment
Example #4
0
def get_mobilenet_inference_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                                       ranking: DeploymentRanking) -> FunctionDeployment:
    mobilenet_inference_tflite_characterization = FunctionCharacterization(images.mobilenet_inference_tflite_manifest,
                                                                           fet_oracle,
                                                                           resource_oracle)
    mobilenet_inference_tpu_characterization = FunctionCharacterization(images.mobilenet_inference_tpu_manifest,
                                                                        fet_oracle, resource_oracle)

    tflite = storage.mobilenet_model_tflite_bucket_item.name
    data_storage_tflite_labels = {
        'data.skippy.io/receives-from-storage': '4M',
        'data.skippy.io/receives-from-storage/path': f'{storage.mobilenet_bucket}/{tflite}',
    }

    tpu = storage.mobilenet_model_tpu_bucket_item.name
    data_storage_tpu_labels = {
        'data.skippy.io/receives-from-storage': '4M',
        'data.skippy.io/receives-from-storage/path': f'{storage.mobilenet_bucket}/{tpu}',
    }

    mobilenet_tpu_function = FunctionDefinition(
        name=images.mobilenet_inference_function,
        image=images.mobilenet_inference_tpu_manifest,
        characterization=mobilenet_inference_tpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '1b', 'device.edgerun.io/accelerator': 'TPU'})
    mobilenet_tpu_function.requests = Resources.from_str("100Mi", "1000m")

    mobilenet_tflite_function = FunctionDefinition(
        name=images.mobilenet_inference_function,
        image=images.mobilenet_inference_tflite_manifest,
        characterization=mobilenet_inference_tflite_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '1a'})
    mobilenet_tflite_function.requests = Resources.from_str("100Mi", "1000m")
    mobilenet_tpu_function.labels.update(data_storage_tpu_labels)
    mobilenet_tflite_function.labels.update(data_storage_tflite_labels)

    deployment = FunctionDeployment(
        images.mobilenet_inference_function,
        {
            images.mobilenet_inference_tpu_manifest: mobilenet_tpu_function,
            images.mobilenet_inference_tflite_manifest: mobilenet_tflite_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.mobilenet_inference_tpu_manifest: 1,
        images.mobilenet_inference_tflite_manifest: 1
    }

    return deployment
Example #5
0
def get_resnet_training_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                                   ranking: DeploymentRanking) -> FunctionDeployment:
    resnet_training_gpu_characterization = FunctionCharacterization(images.resnet50_training_gpu_manifest,
                                                                    fet_oracle,
                                                                    resource_oracle)

    resnet_training_cpu_characterization = FunctionCharacterization(images.resnet50_training_cpu_manifest,
                                                                    fet_oracle,
                                                                    resource_oracle)
    data = storage.resnet_train_bucket_item.name

    data_storage_labels = {
        'data.skippy.io/receives-from-storage': '58M',
        'data.skippy.io/sends-to-storage': '103M',
        'data.skippy.io/receives-from-storage/path': f'{storage.resnet_train_bucket}/{data}',
        'data.skippy.io/sends-to-storage/path': f'{storage.resnet_train_bucket}/updated_model'
    }

    resnet_training_gpu_function = FunctionDefinition(
        name=images.resnet50_training_function,
        image=images.resnet50_training_gpu_manifest,
        characterization=resnet_training_gpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '2', 'device.edgerun.io/accelerator': 'GPU',
                'device.edgerun.io/vram': '2000', })

    resnet_training_gpu_function.labels.update(data_storage_labels)
    resnet_training_gpu_function.requests = Resources.from_str("800Mi", "1000m")

    resnet_training_cpu_function = FunctionDefinition(
        name=images.resnet50_training_function,
        image=images.resnet50_training_cpu_manifest,
        characterization=resnet_training_cpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '2'})

    resnet_training_cpu_function.labels.update(data_storage_labels)
    resnet_training_cpu_function.requests = Resources.from_str("1Gi", "1000m")
    deployment = FunctionDeployment(
        images.resnet50_training_function,
        {
            images.resnet50_training_gpu_manifest: resnet_training_gpu_function,
            images.resnet50_training_cpu_manifest: resnet_training_cpu_function
        },
        ranking
    )

    deployment.function_factor = {
        images.resnet50_training_gpu_manifest: 1,
        images.resnet50_training_cpu_manifest: 1
    }

    return deployment
Example #6
0
def get_tf_gpu_deployment(ranking: DeploymentRanking,
                          scaling_config: ScalingConfiguration = None):
    # Design Time
    tf_gpu_function_image = FunctionImage(image=images.tf_gpu_manifest)
    tf_gpu_function = Function(name=images.tf_gpu_function,
                               fn_images=[tf_gpu_function_image])

    # Run time
    tf_gpu_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="300Mi")
    tf_gpu_function_container = FunctionContainer(
        tf_gpu_function_image,
        resource_config=tf_gpu_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '3',
            'device.edgerun.io/accelerator': 'GPU',
            'device.edgerun.io/vram': '2000',
        })

    deployment = FunctionDeployment(
        tf_gpu_function, [tf_gpu_function_container],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    return deployment
Example #7
0
    def prepare_deployments(self) -> List[FunctionDeployment]:
        python_pi_deployment = FunctionDeployment(
            name='python-pi',
            function_definitions={
                'python-pi-cpu': FunctionDefinition(name='python-pi', image='python-pi-cpu')
            }
        )
        resnet50_inference_deployment = FunctionDeployment(
            name='resnet50-inference',
            function_definitions={
                'resnet50-inference-gpu': FunctionDefinition(name='resnet50-inference', image='resnet50-inference-gpu'),
                'resnet50-inference-cpu': FunctionDefinition(name='resnet50-inference', image='resnet50-inference-cpu')
            }
        )

        return [python_pi_deployment, resnet50_inference_deployment]
Example #8
0
def get_fio_deployment(
        ranking: DeploymentRanking,
        scaling_config: ScalingConfiguration = None) -> FunctionDeployment:
    # Design Time
    fio_function_image = FunctionImage(image=images.fio_manifest)
    fio_function = Function(name=images.fio_function,
                            fn_images=[fio_function_image])

    # Run time
    fio_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="200Mi")

    fio_function_container = FunctionContainer(
        fio_function_image,
        resource_config=fio_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '1'
        })

    deployment = FunctionDeployment(
        fio_function, [fio_function_container],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    return deployment
Example #9
0
    def prepare_resnet_inference_deployment(self):
        # Design time

        resnet_inference = 'resnet50-inference'
        inference_cpu = 'resnet50-inference-cpu'
        inference_gpu = 'resnet50-inference-gpu'

        resnet_inference_gpu = FunctionImage(image=inference_gpu)
        resnet_inference_cpu = FunctionImage(image=inference_cpu)
        resnet_fn = Function(
            resnet_inference,
            fn_images=[resnet_inference_gpu, resnet_inference_cpu])

        # Run time

        # default kubernetes requested resources
        resnet_cpu_container = FunctionContainer(resnet_inference_cpu)

        # custom defined requested resources
        request = KubernetesResourceConfiguration.create_from_str(
            cpu='100m', memory='1024Mi')
        resnet_gpu_container = FunctionContainer(resnet_inference_gpu,
                                                 resource_config=request)

        resnet_fd = FunctionDeployment(
            resnet_fn, [resnet_cpu_container, resnet_gpu_container],
            ScalingConfiguration(),
            DeploymentRanking([inference_gpu, inference_cpu]))

        return resnet_fd
Example #10
0
def get_resnet50_inference_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                                      ranking: DeploymentRanking) -> FunctionDeployment:
    resnet_cpu_characterization = FunctionCharacterization(images.resnet50_inference_cpu_manifest, fet_oracle,
                                                           resource_oracle)
    resnet_gpu_characterization = FunctionCharacterization(images.resnet50_inference_gpu_manifest, fet_oracle,
                                                           resource_oracle)

    model = storage.resnet_model_bucket_item.name
    data_storage = {
        'data.skippy.io/receives-from-storage': '103M',
        'data.skippy.io/receives-from-storage/path': f'{storage.resnet_model_bucket}/{model}',
    }

    resnet50_cpu_function = FunctionDefinition(
        name=images.resnet50_inference_function,
        image=images.resnet50_inference_cpu_manifest,
        characterization=resnet_cpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '4a'})

    resnet50_cpu_function.requests = Resources.from_str("150Mi", "1000m")

    resnet50_gpu_function = FunctionDefinition(
        name=images.resnet50_inference_function,
        image=images.resnet50_inference_gpu_manifest,
        characterization=resnet_gpu_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'device.edgerun.io/accelerator': 'GPU',
                'device.edgerun.io/vram': '1500',
                'cluster': '4b'})
    resnet50_gpu_function.requests = Resources.from_str("400Mi", "1000m")
    resnet50_gpu_function.labels.update(data_storage)
    resnet50_cpu_function.labels.update(data_storage)

    deployment = FunctionDeployment(
        images.resnet50_inference_function,
        {
            images.resnet50_inference_gpu_manifest: resnet50_gpu_function,
            images.resnet50_inference_cpu_manifest: resnet50_cpu_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.resnet50_inference_gpu_manifest: 1,
        images.resnet50_inference_cpu_manifest: 1,
    }

    return deployment
Example #11
0
def get_resnet50_inference_deployment(
        ranking: DeploymentRanking,
        scaling_config: ScalingConfiguration = None) -> FunctionDeployment:
    # Design Time
    resnet50_cpu_function_image = FunctionImage(
        image=images.resnet50_inference_cpu_manifest)
    resnet50_gpu_function_image = FunctionImage(
        image=images.resnet50_inference_gpu_manifest)

    resnet50_function = Function(
        images.resnet50_inference_function,
        fn_images=[resnet50_gpu_function_image, resnet50_cpu_function_image])

    # Run time
    model = storage.resnet_model_bucket_item.name
    data_storage = {
        'data.skippy.io/receives-from-storage':
        '103M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.resnet_model_bucket}/{model}',
    }

    resnet50_cpu_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="150Mi")
    resnet50_cpu_function = FunctionContainer(
        resnet50_cpu_function_image,
        resource_config=resnet50_cpu_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '4a'
        })

    resnet50_gpu_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="400Mi")
    resnet50_gpu_function = FunctionContainer(
        resnet50_gpu_function_image,
        resource_config=resnet50_gpu_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'device.edgerun.io/accelerator': 'GPU',
            'device.edgerun.io/vram': '1500',
            'cluster': '4b'
        })

    resnet50_gpu_function.labels.update(data_storage)
    resnet50_cpu_function.labels.update(data_storage)

    deployment = FunctionDeployment(
        resnet50_function, [resnet50_gpu_function, resnet50_cpu_function],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    return deployment
Example #12
0
def get_resnet_preprocessing_deployment(fet_oracle: FetOracle, resource_oracle: ResourceOracle,
                                        ranking: DeploymentRanking):
    resnet_preprocessing_characterization = FunctionCharacterization(images.resnet50_preprocessing_manifest,
                                                                     fet_oracle,
                                                                     resource_oracle)

    data = storage.resnet_pre_bucket_item.name
    data_storage_labels = {
        'data.skippy.io/receives-from-storage': '14M',
        'data.skippy.io/sends-to-storage': '14M',
        'data.skippy.io/receives-from-storage/path': f'{storage.resnet_pre_bucket}/{data}',
        'data.skippy.io/sends-to-storage/path': f'{storage.resnet_pre_bucket}/preprocessed'
    }

    resnet_preprocessing_function = FunctionDefinition(

        name=images.resnet50_preprocessing_function,
        image=images.resnet50_preprocessing_manifest,
        characterization=resnet_preprocessing_characterization,
        labels={'watchdog': 'http', 'workers': '4', 'cluster': '1'}
    )

    resnet_preprocessing_function.labels.update(data_storage_labels)
    resnet_preprocessing_function.requests = Resources.from_str("100Mi", "1000m")

    deployment = FunctionDeployment(
        images.resnet50_preprocessing_function,
        {
            images.resnet50_preprocessing_manifest: resnet_preprocessing_function,
        },
        ranking
    )

    deployment.function_factor = {
        images.resnet50_preprocessing_manifest: 1
    }

    return deployment
Example #13
0
    def prepare_python_pi_deployment(self):
        # Design Time

        python_pi = 'python-pi'
        python_pi_cpu = FunctionImage(image='python-pi-cpu')
        python_pi_fn = Function(python_pi, fn_images=[python_pi_cpu])

        # Run time

        python_pi_fn_container = FunctionContainer(python_pi_cpu)

        python_pi_fd = FunctionDeployment(python_pi_fn,
                                          [python_pi_fn_container],
                                          ScalingConfiguration())

        return python_pi_fd
Example #14
0
def get_resnet_preprocessing_deployment(
        ranking: DeploymentRanking,
        scaling_config: ScalingConfiguration = None):
    # Design time
    resnet_preprocessing_function_image = FunctionImage(
        image=images.resnet50_preprocessing_manifest)
    resnet_preprocessing_function = Function(
        name=images.resnet50_preprocessing_function,
        fn_images=[resnet_preprocessing_function_image])

    # Run time
    data = storage.resnet_pre_bucket_item.name

    data_storage_labels = {
        'data.skippy.io/receives-from-storage':
        '14M',
        'data.skippy.io/sends-to-storage':
        '14M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.resnet_pre_bucket}/{data}',
        'data.skippy.io/sends-to-storage/path':
        f'{storage.resnet_pre_bucket}/preprocessed'
    }

    resnet_preprocessing_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="100Mi")

    resnet_preprocessing_function_container = FunctionContainer(
        fn_image=resnet_preprocessing_function_image,
        resource_config=resnet_preprocessing_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '1'
        })

    resnet_preprocessing_function.labels.update(data_storage_labels)

    deployment = FunctionDeployment(
        resnet_preprocessing_function,
        [resnet_preprocessing_function_container],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    return deployment
Example #15
0
    def prepare_resnet_training_deployment(self):
        # Design time

        resnet_training = 'resnet50-training'
        training_cpu = 'resnet50-training-cpu'

        resnet_training_cpu = FunctionImage(image=training_cpu)
        resnet_fn = Function(resnet_training, fn_images=[resnet_training_cpu])

        # Run time

        resnet_cpu_container = FunctionContainer(resnet_training_cpu)

        resnet_fd = FunctionDeployment(resnet_fn, [resnet_cpu_container],
                                       ScalingConfiguration(),
                                       DeploymentRanking([training_cpu]))

        return resnet_fd
Example #16
0
    def prepare_resnet_inference_deployment(self):
        # Design time

        resnet_inference = 'resnet50-inference'
        inference_cpu = 'resnet50-inference-cpu'

        resnet_inference_cpu = FunctionImage(image=inference_cpu)
        resnet_fn = Function(resnet_inference,
                             fn_images=[resnet_inference_cpu])

        # Run time

        resnet_cpu_container = FunctionContainer(resnet_inference_cpu)

        resnet_fd = FunctionDeployment(resnet_fn, [resnet_cpu_container],
                                       ScalingConfiguration(),
                                       DeploymentRanking([inference_cpu]))

        return resnet_fd
Example #17
0
def get_speech_inference_deployment(
        ranking: DeploymentRanking,
        scaling_config: ScalingConfiguration = None) -> FunctionDeployment:
    # Design time
    speech_gpu_function_image = FunctionImage(
        image=images.speech_inference_gpu_manifest)
    speech_tflite_function_image = FunctionImage(
        image=images.speech_inference_tflite_manifest)
    speech_function = Function(
        images.speech_inference_function,
        fn_images=[speech_gpu_function_image, speech_tflite_function_image])

    # Run time
    tflite = storage.speech_model_tflite_bucket_item
    data_storage_tflite = {
        'data.skippy.io/receives-from-storage':
        '48M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.speech_bucket}/{tflite.name}',
    }
    gpu = storage.speech_model_gpu_bucket_item
    data_storage_gpu = {
        # this size is without scorer object, which is used to impove accuracy but doesn't seem to affect runtime,
        # scorer weighs around 900M - simple benchmarks in bash have made no difference in runtime
        'data.skippy.io/receives-from-storage':
        '188M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.speech_bucket}/{gpu.name}',
    }

    speech_gpu_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="300Mi")
    speech_gpu_function = FunctionContainer(
        speech_gpu_function_image,
        resource_config=speech_gpu_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '0',
            'device.edgerun.io/accelerator': 'GPU',
            'device.edgerun.io/vram': '1500',
        })
    speech_gpu_function.labels.update(data_storage_gpu)

    speech_tflite_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="100Mi")
    speech_tflite_function = FunctionContainer(
        speech_tflite_function_image,
        resource_config=speech_tflite_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '1'
        })
    speech_tflite_function.labels.update(data_storage_tflite)

    deployment = FunctionDeployment(
        speech_function, [speech_gpu_function, speech_tflite_function],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    return deployment
Example #18
0
def get_mobilenet_inference_deployment(
        ranking: DeploymentRanking,
        scaling_config: ScalingConfiguration = None) -> FunctionDeployment:
    # Design time
    mobilenet_tpu_function_image = FunctionImage(
        image=images.mobilenet_inference_tpu_manifest)

    mobilenet_tflite_function_image = FunctionImage(
        image=images.mobilenet_inference_tflite_manifest)

    mobilenet_function = Function(images.mobilenet_inference_function,
                                  fn_images=[
                                      mobilenet_tpu_function_image,
                                      mobilenet_tflite_function_image
                                  ])

    # Run time
    tflite = storage.mobilenet_model_tflite_bucket_item.name
    data_storage_tflite_labels = {
        'data.skippy.io/receives-from-storage':
        '4M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.mobilenet_bucket}/{tflite}',
    }

    tpu = storage.mobilenet_model_tpu_bucket_item.name
    data_storage_tpu_labels = {
        'data.skippy.io/receives-from-storage':
        '4M',
        'data.skippy.io/receives-from-storage/path':
        f'{storage.mobilenet_bucket}/{tpu}',
    }

    mobilenet_tpu_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="100Mi")
    mobilenet_tpu_function = FunctionContainer(
        mobilenet_tpu_function_image,
        resource_config=mobilenet_tpu_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '1b',
            'device.edgerun.io/accelerator': 'TPU'
        })

    mobilenet_tflite_function_requests = KubernetesResourceConfiguration.create_from_str(
        cpu="1000m", memory="100Mi")
    mobilenet_tflite_function = FunctionContainer(
        mobilenet_tflite_function_image,
        resource_config=mobilenet_tflite_function_requests,
        labels={
            'watchdog': 'http',
            'workers': '4',
            'cluster': '1a'
        })

    mobilenet_tpu_function.labels.update(data_storage_tpu_labels)
    mobilenet_tflite_function.labels.update(data_storage_tflite_labels)

    deployment = FunctionDeployment(
        mobilenet_function,
        [mobilenet_tpu_function, mobilenet_tflite_function],
        ScalingConfiguration() if scaling_config is None else scaling_config,
        ranking)

    deployment.function_factor = {
        images.mobilenet_inference_tpu_manifest: 1,
        images.mobilenet_inference_tflite_manifest: 1
    }

    return deployment