import similarity import display import grouping import tradingmeasure import parameters as para import util import constants as const #testOutputFilename = 'testresults.txt' testOutputFilename = 'testresults_test.txt' #testOutputFilename = 'results_confidenceSellOrKeep_fyh_nocond_byFirst.txt' # test all algos algosToTest = { 'acf': similarity.tsdist('acfDistance'), 'ar.lpc.ceps': similarity.tsdist('ar.lpc.cepsDistance'), #'ar.mah': similarity.tsdist('ar.mahDistance'), #Need to retrieve p-value 'ar.pic': similarity.tsdist('ar.picDistance'), 'ccor': similarity.tsdist('ccorDistance'), #'cdm': similarity.tsdist('cdmDistance'), # (USE) SLOW / INTERNAL ERROR 5 IN MEMCOMPRESS...? 'cid': similarity.tsdist('cidDistance'), 'cor': similarity.tsdist('corDistance'), 'cort': similarity.tsdist('cortDistance'), 'dissimapprox': similarity.tsdist('dissimapproxDistance'), 'dissim': similarity.tsdist('dissimDistance'), 'dtw': similarity.tsdist('dtwDistance'), 'edr_005': similarity.tsdist('edrDistance', 0.05), 'edr_01': similarity.tsdist('edrDistance', 0.1), 'edr_025': similarity.tsdist('edrDistance', 0.25), 'edr_05': similarity.tsdist('edrDistance', 0.5), 'erp_01': similarity.tsdist('erpDistance', 0.1),
import grouping import tradingmeasure import pyswarm import dataselect import util import constants as const # We try to find the optimal linear combination of these parameters. # Edit this list to configure the parameters to use. # Make sure that these parameters have been defined by parameters.readFile() first. parametersToOptimise = ['Close', 'RatioClose', 'AvgClose', 'DiffCloseSign', 'RunningRatio'] # Test multiple algorithms # The average score of the algorithms is used as the objective function. algosToTest = { 'sts': similarity.tsdist('stsDistance'), 'inf.norm': similarity.tsdist('inf.normDistance'), 'cort': similarity.tsdist('cortDistance'), 'lcss_05': similarity.tsdist('lcssDistance', 0.05), 'minkowski_25': similarity.lpNorms(2.5), #otherwise known as lp-norms 'minkowski_30': similarity.lpNorms(3), 'lbKeogh_3': similarity.tsdist('lb.keoghDistance', 3), 'dtw': similarity.tsdist('dtwDistance'), 'euclidean': similarity.tsdist('euclideanDistance'), 'fourier': similarity.tsdist('fourierDistance'), 'dissim': similarity.tsdist('dissimDistance'), } # Test only sts (overwrites the previous algosToTest if not commented out) algosToTest = { 'sts': similarity.tsdist('stsDistance'),