# ヤコビとヤコビ転置 J = sl.jacobi_matrix(ll, q) Jt = sl.transpose_matrix(J) # 手先位置導出 X1 = ll[0] * cos(q[0]) + ll[1] * cos(q[0] + q[1]) Y1 = ll[0] * sin(q[0]) + ll[1] * sin(q[0] + q[1]) position1 = [X1, Y1] X2 = ll[2] * cos(q[2]) + ll[3] * cos(q[2] + q[3]) + r0[0] Y2 = ll[2] * sin(q[2]) + ll[3] * sin(q[2] + q[3]) + r0[1] position2 = [X2, Y2] # 偏差積分値の計算 sum_q[0] = sl.sum_position_difference(sum_q[0], qd[0], q[0], sampling_time) sum_q[1] = sl.sum_position_difference(sum_q[1], qd[1], q[1], sampling_time) sum_q[2] = sl.sum_position_difference(sum_q[2], qd[2], q[2], sampling_time) sum_q[3] = sl.sum_position_difference(sum_q[3], qd[3], q[3], sampling_time) sum_q = [sum_q[0], sum_q[1], sum_q[2], sum_q[3]] Tau, actf, thetad = sl.PIDcontrol_eforce_base_3dof( gain1, gain2, theta, dot_theta, Xd, position1, Jt, k, qd, sum_q, N, force_gain, eps, Fconstant) # 偏差と非線形弾性特性値の計算 e = sl.difference_part(theta, q, N)
Phi = sl.phi_matrix(mm, E) invPhi = sl.inverse_matrix(Phi) # ヤコビとヤコビ転置 J = sl.jacobi_matrix(ll, q) Jt = sl.transpose_matrix(J) # 手先位置導出 X = ll[0] * cos(q[0]) + ll[1] * cos(q[0] + q[1]) Y = ll[0] * sin(q[0]) + ll[1] * sin(q[0] + q[1]) position = [X, Y] # 偏差積分値の計算 sum_x = sl.sum_position_difference(sum_x, xd, X, sampling_time) sum_y = sl.sum_position_difference(sum_y, yd, Y, sampling_time) sum_X = [sum_x, sum_y] # モータ入力 Tau = sl.PID_potiton_control_3dof(gain, Xd, position, Jt, dot_theta, sum_X) # 偏差と非線形弾性特性値の計算 e = sl.difference_part(theta, q, N) K = sl.non_linear_item(k, e) # 拘束力とダイナミクス右辺の計算 dot_P, P, dot_Q, Q = sl.restraint_part(ll, q, dot_q)
q[0] + q[1] + q[2]) Y = ll[0] * sin(q[0]) + ll[1] * sin(q[0] + q[1]) + ll[2] * sin( q[0] + q[1] + q[2]) position = [X, Y] X2 = ll[3] * cos(q[3]) + ll[4] * cos(q[3] + q[4]) Y2 = ll[3] * sin(q[3]) + ll[4] * sin(q[3] + q[4]) position2 = [X2, Y2] R = sqrt(pow(X, 2) + pow(Y, 2)) phi = radians(atan2(Y, X)) phi1 = radians(q[0] + q[1] + q[2]) phi2 = radians(q[3] + q[4]) # 偏差積分値の計算 sum_r = sl.sum_position_difference(sum_r, Rd, R, sampling_time) sum_phi = sl.sum_position_difference(sum_phi, phid, phi, sampling_time) sum_polar = [sum_r, sum_phi] sum_q[0] = sl.sum_position_difference(sum_q[0], qd[0], q[0], sampling_time) sum_q[1] = sl.sum_position_difference(sum_q[1], qd[1], q[1], sampling_time) sum_q[2] = sl.sum_position_difference(sum_q[2], qd[2], q[2], sampling_time) sum_q[3] = sl.sum_position_difference(sum_q[3], qd[3], q[3], sampling_time) sum_q[4] = sl.sum_position_difference(sum_q[4], qd[4], q[4], sampling_time) sum_q = [sum_q[0], sum_q[1], sum_q[2], sum_q[3], sum_q[4]]