def test_select_point_to_explore_in_two_dimensions(self): ''' This test case just runs code on a multi-dimensional input dataset. It doesn't test any conditions, but could presumably do so in the future. ''' acquire( x=a([ [-0.5, -0.5], [-0.5, 0.5], ]), # Fake fmap and Cmap values from another set of x's fmap=a([ [0.03254087], [-0.03254087], ]), Cmap=a([ [0.07894662, -0.07894662], [-0.07894662, 0.07894662], ]), bounds=a([ [-1.0, 1.0], [-1.0, 1.0], ]), kernelfunc=default_kernel )
def test_select_point_to_exploit(self): # We attempt to force exploitation by covering most of the input # space and expecting that the maximization algorithm will choose # the point between the highest outputs, given a symmetric output function. next_point = acquire( x=a([ [-0.75], [-0.25], [0.25], [0.75], ]), # I got these fmap and Cmap values from running our optimizer # on the input data with comparisons [1, 0], [1, 3], [2, 0], [2, 3]. fmap=a([ [0.08950024], [0.21423927], [0.21423927], [0.08950024], ]), Cmap=a([ [0.15672336, -0.07836168, -0.07836168, 0.0], [-0.07836168, 0.15672336, 0.0, -0.07836168], [-0.07836168, 0.0, 0.15672336, -0.07836168], [0.0, -0.07836168, -0.07836168, 0.15672336], ]), bounds=a([ [-1.0, 1.0], ]), kernelfunc=default_kernel ) self.assertTrue(next_point[0] > -.25) self.assertTrue(next_point[0] < .25)
def test_select_point_to_explore(self): next_point = acquire( x=a([ [-0.75], [-0.4], ]), # I got these fmap and Cmap values from running our optimizer # on the input data with comparisons [0, 1] fmap=a([ [0.03254087], [-0.03254087], ]), Cmap=a([ [0.07894662, -0.07894662], [-0.07894662, 0.07894662], ]), bounds=a([ [-1.0, 1.0], ]), kernelfunc=default_kernel ) self.assertTrue(next_point[0] > -.4)