def test_multiple_vector_valued(self): """ For a function that returns a vector rather than a scalar, make sure Dofs.f(), Dofs.jac(), and Dofs.fd_jac() behave correctly. """ for nparams1 in range(1, 5): for nvals1 in range(1, 5): nparams2 = np.random.randint(1, 6) nparams3 = np.random.randint(1, 6) nvals2 = np.random.randint(1, 6) nvals3 = np.random.randint(1, 6) o1 = Affine(nparams=nparams1, nvals=nvals1) o2 = Affine(nparams=nparams2, nvals=nvals2) o3 = Affine(nparams=nparams3, nvals=nvals3) dofs = Dofs([o1, o2, o3], diff_method="centered") dofs.set( (np.random.rand(nparams1 + nparams2 + nparams3) - 0.5) * 4) f1 = np.matmul(o1.A, o1.x) + o1.B f2 = np.matmul(o2.A, o2.x) + o2.B f3 = np.matmul(o3.A, o3.x) + o3.B np.testing.assert_allclose(dofs.f(), np.concatenate((f1, f2, f3)), \ rtol=1e-13, atol=1e-13) true_jac = np.zeros( (nvals1 + nvals2 + nvals3, nparams1 + nparams2 + nparams3)) true_jac[0:nvals1, 0:nparams1] = o1.A true_jac[nvals1:nvals1 + nvals2, nparams1:nparams1 + nparams2] = o2.A true_jac[nvals1 + nvals2:nvals1 + nvals2 + nvals3, \ nparams1 + nparams2:nparams1 + nparams2 + nparams3] = o3.A np.testing.assert_allclose(dofs.jac(), true_jac, rtol=1e-13, atol=1e-13) np.testing.assert_allclose(dofs.fd_jac(), \ true_jac, rtol=1e-7, atol=1e-7)
def test_mixed_vector_valued(self): """ For a mixture of functions that return a scalar vs return a vector, make sure Dofs.f(), Dofs.jac(), and Dofs.fd_jac() behave correctly. """ for nparams1 in range(1, 5): for nvals1 in range(1, 5): nparams2 = np.random.randint(1, 6) nparams3 = np.random.randint(1, 6) nvals2 = np.random.randint(1, 6) nvals3 = np.random.randint(1, 6) o1 = Affine(nparams=nparams1, nvals=nvals1) o2 = Affine(nparams=nparams2, nvals=nvals2) o3 = Affine(nparams=nparams3, nvals=nvals3) a1 = Adder(n=2) a2 = Adder(n=3) dofs = Dofs([o1, o2, a1, o3, a2], diff_method="centered") dofs.set( (np.random.rand(nparams1 + nparams2 + nparams3 + 5) - 0.5) * 4) f1 = np.matmul(o1.A, o1.x) + o1.B f2 = np.matmul(o2.A, o2.x) + o2.B f3 = np.array([a1.f]) f4 = np.matmul(o3.A, o3.x) + o3.B f5 = np.array([a2.f]) np.testing.assert_allclose(dofs.f(), np.concatenate((f1, f2, f3, f4, f5)), \ rtol=1e-13, atol=1e-13) true_jac = np.zeros((nvals1 + nvals2 + nvals3 + 2, nparams1 + nparams2 + nparams3 + 5)) true_jac[0:nvals1, 0:nparams1] = o1.A true_jac[nvals1:nvals1 + nvals2, nparams1:nparams1 + nparams2] = o2.A true_jac[nvals1 + nvals2:nvals1 + nvals2 + 1, \ nparams1 + nparams2:nparams1 + nparams2 + 2] = np.ones(2) true_jac[nvals1 + nvals2 + 1:nvals1 + nvals2 + 1 + nvals3, \ nparams1 + nparams2 + 2:nparams1 + nparams2 + 2 + nparams3] = o3.A true_jac[nvals1 + nvals2 + 1 + nvals3:nvals1 + nvals2 + nvals3 + 2, \ nparams1 + nparams2 + nparams3 + 2:nparams1 + nparams2 + nparams3 + 5] = np.ones(3) np.testing.assert_allclose(dofs.jac(), true_jac, rtol=1e-13, atol=1e-13) np.testing.assert_allclose(dofs.fd_jac(), \ true_jac, rtol=1e-7, atol=1e-7)
def test_vector_valued(self): """ For a function that returns a vector rather than a scalar, make sure Dofs.f(), Dofs.jac(), and Dofs.fd_jac() behave correctly. """ for nparams in range(1, 5): for nvals in range(1, 5): o = Affine(nparams=nparams, nvals=nvals) o.set_dofs((np.random.rand(nparams) - 0.5) * 4) dofs = Dofs([o], diff_method="centered") np.testing.assert_allclose(dofs.f(), np.matmul(o.A, o.x) + o.B, \ rtol=1e-13, atol=1e-13) np.testing.assert_allclose(dofs.jac(), o.A, rtol=1e-13, atol=1e-13) np.testing.assert_allclose(dofs.fd_jac(), \ o.A, rtol=1e-7, atol=1e-7)
def test_derivatives(self): """ Check the automatic differentiation for area and volume. """ for mpol in range(1, 3): for ntor in range(2): for nfp in range(1, 4): s = SurfaceRZFourier(nfp=nfp, mpol=mpol, ntor=ntor) x0 = s.get_dofs() x = np.random.rand(len(x0)) - 0.5 x[0] = np.random.rand() + 2 # This surface will probably self-intersect, but I # don't think this actually matters here. s.set_dofs(x) dofs = Dofs([s.area, s.volume]) jac = dofs.jac() fd_jac = dofs.fd_jac() print('difference for surface test_derivatives:', jac - fd_jac) np.testing.assert_allclose(jac, fd_jac, rtol=1e-4, atol=1e-4)
def test_Jacobian(self): for n in range(1, 20): v1 = np.random.rand() * 4 - 2 v2 = np.random.rand() * 4 - 2 o = TestObject2(v1, v2) o.adder.set_dofs(np.random.rand(2) * 4 - 2) o.t.set_dofs([np.random.rand() * 4 - 2]) o.t.adder1.set_dofs(np.random.rand(3) * 4 - 2) o.t.adder2.set_dofs(np.random.rand(2) * 4 - 2) r = Rosenbrock(b=3.0) r.set_dofs(np.random.rand(2) * 3 - 1.5) a = Affine(nparams=3, nvals=3) # Randomly fix some of the degrees of freedom o.fixed = np.random.rand(2) > 0.5 o.adder.fixed = np.random.rand(2) > 0.5 o.t.adder1.fixed = np.random.rand(3) > 0.5 o.t.adder2.fixed = np.random.rand(2) > 0.5 r.fixed = np.random.rand(2) > 0.5 a.fixed = np.random.rand(3) > 0.5 rtol = 1e-6 atol = 1e-6 for j in range(4): # Try different sets of the objects: if j == 0: dofs = Dofs([o.J, r.terms, o.t.J]) nvals = 4 nvals_per_func = [1, 2, 1] elif j == 1: dofs = Dofs([r.term2, r.terms]) nvals = 3 nvals_per_func = [1, 2] elif j == 2: dofs = Dofs( [r.term2, Target(o.t, 'f'), r.term1, Target(o, 'f')]) nvals = 4 nvals_per_func = [1, 1, 1, 1] elif j == 3: dofs = Dofs([a, o]) nvals = 4 nvals_per_func = [3, 1] jac = dofs.jac() dofs.diff_method = "forward" fd_jac = dofs.fd_jac() dofs.diff_method = "centered" fd_jac_centered = dofs.fd_jac() #print('j=', j, ' Diff in Jacobians:', jac - fd_jac) #print('jac: ', jac) #print('fd_jac: ', fd_jac) #print('fd_jac_centered: ', fd_jac_centered) #print('shapes: jac=', jac.shape, ' fd_jac=', fd_jac.shape, ' fd_jac_centered=', fd_jac_centered.shape) np.testing.assert_allclose(jac, fd_jac, rtol=rtol, atol=atol) np.testing.assert_allclose(fd_jac, fd_jac_centered, rtol=rtol, atol=atol) self.assertEqual(dofs.nvals, nvals) self.assertEqual(list(dofs.nvals_per_func), nvals_per_func)