Example #1
0
def main(argv):
    args = parser.parse_args(argv[1:])

    # Fetch the data
    (train_x, train_y), (test_x, test_y) = simu_data.load_data()

    # Feature columns describe how to use the input.
    my_feature_columns = []
    for key in train_x.keys():
        my_feature_columns.append(
            tf.feature_column.numeric_column(key=key))

    # Build 2 hidden layer DNN with 10, 10 units respectively.
    classifier = tf.estimator.Estimator(
        model_fn=gLasso_model,
        params={
            'feature_columns': my_feature_columns,
            # Two hidden layers of 20 nodes each.
            'hidden_units': [20, 20],
            # The model output.
            'n_response': 1,
        })

    # Train the Model.
    classifier.train(
        input_fn=lambda: simu_data.train_input_fn(
            train_x, train_y, args.batch_size),
        steps=args.train_steps)

    # Evaluate the model.
    eval_result = classifier.evaluate(
        input_fn=lambda: simu_data.eval_input_fn(test_x, test_y, args.batch_size))

    # extract variables from model
    var_dict = dict()
    for var_name in classifier.get_variable_names():
        var_dict[var_name] = classifier.get_variable_value(var_name)

    print('\nTest set MSE: {MSE:0.3f}\n'.format(**eval_result))
Example #2
0
            classifier = tf.estimator.Estimator(model_fn=gLasso_model,
                                                params={
                                                    'feature_columns':
                                                    my_feature_columns,
                                                    'hidden_units': [0],
                                                    'n_response': 1,
                                                    'reg': reg,
                                                })

            classifier.train(input_fn=lambda: simu_data.train_input_fn(
                train_x, train_y, 100),
                             steps=10000)

            eval_result = classifier.evaluate(
                input_fn=lambda: simu_data.eval_input_fn(test_x, test_y, 100))

            var_dict = dict()
            for var_name in classifier.get_variable_names():
                var_dict[var_name] = classifier.get_variable_value(var_name)

            v1 = np.zeros(p)
            v1[0] = v1[3] = v1[6] = 1
            v1 = v1.reshape((1, -1))
            v2 = np.linalg.norm(var_dict["dense/kernel"], axis=1).reshape(
                (1, -1))
            cos_dis = cosine_similarity(v1, v2)
            cos_dis = cos_dis[0][0]

            spec_norm = np.linalg.norm(var_dict["dense/kernel"], 2)