orange = [1.,0.5,0.] gray = [0.6, 0.6, 0.6] # Generate data N = 100 G = 100 alpha = 3 data_type = 'wide' # Create new data or load old data new_data = True if new_data: # Simulate data and get default deft settings data, defaults = simulate_data_1d.run(data_type,N) pickle.dump( (data,defaults), open( "data.p", "wb" ) ) else: data, defaults = pickle.load(open("data.p","rb")) # Set bounding box bbox = [defaults['box_min'], defaults['box_max']] L = bbox[1]-bbox[0] h = 1.*L/G # Create a variety of histograms num_bins = [5,20,100] plt.figure()
# Colors to use blue = [0.,0.,1.] lightblue = [0.0, 0.5, 1.0] orange = [1.,0.5,0.] gray = [0.6, 0.6, 0.6] # Plot histogram with density estimate on top plt.figure(figsize=[ 11.55, 10.25]) num_rows = len(alphas) num_cols = len(data_types) for d, data_type in enumerate(data_types): data, settings = simulate_data_1d.run(data_type,N) box = [settings['box_min'], settings['box_max']] # Histogram data R, xs = utils.histogram_counts_1d(data, G, bbox=box, normalized=True) h = xs[1]-xs[0] for a, alpha in enumerate(alphas): ax = plt.subplot(num_rows, num_cols, num_cols*a + d + 1) # Get basis defining moments to constrain basis = utils.legendre_basis_1d(G,alpha) # Compute maxent distribution for histogram start_time = time.clock()