def __init__(self,
              reward_collision=-500,
              reward_timestep=-5,
              factor=100,
              reward_target=500,
              reward_target_collide=50,
              repeat=2,
              max_collision_len=4):
     self.Rg = reward_target
     self.Rc = reward_collision
     self.Rt = reward_timestep
     self.Reward_target_collide = reward_target_collide
     self.factor = factor
     self.repeat = repeat
     self.done = False
     self.queue = collections.deque(maxlen=repeat)
     self.action_vel = [0.0, 0.6]
     self.action_rotat = [-0.3, 0.0, 0.3]  #kinda need to check
     self.collision_queue = collections.deque(maxlen=repeat)
     self.sim = Client()
     self.action_space = []
     self.target_collider_counter = 0
     self.accuracy_limit = 0.6
     for x in self.action_vel:
         for y in self.action_rotat:
             self.action_space.append([x, y])
     self.action_space_n = len(self.action_space)
     self.observation_space = [36]
	def __init__( self ):
		self.entities = []

		self.client = Client( 0.1, self.new_entity )
		self.client.connect( "localhost", "1324", "1325", self.on_connection )
		self.client.run()
class env_manager():
    def __init__(self,
                 reward_collision=-500,
                 reward_timestep=-5,
                 factor=100,
                 reward_target=500,
                 reward_target_collide=50,
                 repeat=2,
                 max_collision_len=4):
        self.Rg = reward_target
        self.Rc = reward_collision
        self.Rt = reward_timestep
        self.Reward_target_collide = reward_target_collide
        self.factor = factor
        self.repeat = repeat
        self.done = False
        self.queue = collections.deque(maxlen=repeat)
        self.action_vel = [0.0, 0.6]
        self.action_rotat = [-0.3, 0.0, 0.3]  #kinda need to check
        self.collision_queue = collections.deque(maxlen=repeat)
        self.sim = Client()
        self.action_space = []
        self.target_collider_counter = 0
        self.accuracy_limit = 0.6
        for x in self.action_vel:
            for y in self.action_rotat:
                self.action_space.append([x, y])
        self.action_space_n = len(self.action_space)
        self.observation_space = [36]

    def _call_sim(self, action, flag):
        sensor_data, velocity, angular_velocity, target_pos, collision = self.sim.step(
            action, flag)
        velocity = np.round_(math.sqrt(velocity[0]**2 + velocity[1]**2), 3)
        speed = []
        speed.append(velocity)
        speed.append(angular_velocity)
        speed = np.array(speed)
        val = [[round(np.hypot(target_pos[0], target_pos[1]), 3)]]
        state = np.concatenate((sensor_data.reshape(13,
                                                    1), speed.reshape(2, 1),
                                target_pos.reshape(2, 1), val))
        return state, collision

    def reset(self):
        self.queue.clear()
        self.done = False
        state, collision = self._call_sim([0, 0], True)
        for _ in range(self.repeat):
            self.queue.append(state)
            self.collision_queue.append(collision)
        return np.array(self.queue).reshape(-1)

    def step(self, action):
        action_ = self.action_space[action]
        state, collision = self._call_sim(action_, False)
        self.queue.append(state)
        self.collision_queue.append(collision)
        reward = self._reward()
        return np.array(self.queue).reshape(-1), reward, self.done

    def _reward(self):
        reward = 0.0
        #target
        val_1 = math.hypot(self.queue[1][15], self.queue[1][16]) - math.hypot(
            self.queue[0][15], self.queue[0][16])

        if (math.hypot(self.queue[0][15], self.queue[0][16]) <
                self.accuracy_limit):
            reward += self.Rg
            self._academy()
            self.done = True
        else:
            reward += self.factor * (
                math.hypot(self.queue[1][15], self.queue[1][16]) -
                math.hypot(self.queue[0][15], self.queue[0][16]))
        #collision
        if (self.collision_queue[0][0]):
            reward += self.Rc
        #target_collider

    # if(self.collision_queue[0][1]):
    #     reward += self.Reward_target_collide
    #     self.done = True
    #reward per time step
        reward += self.Rt

        if (self.collision_queue[1][0] and self.collision_queue[0][0]):
            self.done = True
        # self._academy()

        return round(reward, 5)

    def _academy(self):

        self.target_collider_counter += 1
        if self.target_collider_counter < 20:
            self.accuracy_limit = self.accuracy_limit - 0.025 if self.accuracy_limit > 0.35 else 0.35
            x = np.random.uniform(low=+1.0650e+00, high=+1.8910e+00)
            y = np.random.uniform(low=-3.9050e+00, high=-3.2680e+00)
            self.sim.target_position = [x, y, 0.0]
        else:
            if self.target_collider_counter == 21:
                self.accuracy_limit = 0.525
            self.sim.position = [+2.6500e+00, -4.3400e+00, +8.0299e-02]
            self.accuracy_limit = self.accuracy_limit - 0.025 if self.accuracy_limit > 0.35 else 0.35
            y = np.random.uniform(low=-3.5650e+00, high=-3.2180e+00)
            x = np.random.uniform(low=+3.5360e+00, high=+4.3470e+00)
            self.sim.target_position = [x, y, 0.0]

    def end(self):
        self.sim.end()
class ClientEntitySystem:
	def __init__( self ):
		self.entities = []

		self.client = Client( 0.1, self.new_entity )
		self.client.connect( "localhost", "1324", "1325", self.on_connection )
		self.client.run()

	def on_connection( self, player_id ):
		print "Connected", player_id
		return self.connection

	def new_entity( self, data ):
		l, = struct.unpack( "!H", data[:2] )
		cls = data[2: 2+l]
		print "new_ent", cls

		if cls == "BlockWorldState":
			w = World()
			self.append( w )
			state = w.state()
		elif cls == "CharacterState":
			c = Character( (0., .1, 0.), (0., 0., 0.) )
			w = TestWeapon( TestProjectile )
			c.equip( w )
			state = c.state()
		else:
			print "Unknown entity type"
			raise ValueError( "Unknown entity type" )

		if state:
			data = state.deserialize( data[2+l:] )
		return NewEntityData( data, state )

	def append( self, ent ):
		self.entities.append( ent )
		
	def draw( self ):
		for i in filter( lambda x: x.drawable, self.entities ):
			i.draw()

		batchable = list( filter( lambda x: x.batchable, self.entities ) )
		batches = defaultdict( list )
		for b in batchable:
			batches[ b.__class__ ].append( b )

		for b in batches.values():
			Batch( b, False ).draw()

	def update( self, dt ):
		self.input_entity = \
			filter( lambda x: x.client_sendable, self.entities )[0]
		self.client.input( self.input_entity.state() )

		for i in filter( lambda x: x.updatable, self.entities ):
			i.update( dt )

		colls = list( filter( lambda x: x.collidable, self.entities ) )
		for i, e in enumerate( colls[:] ):
			for o in colls[:][i+1:]: 
				self.collide( e, o )
					
	def collide( self, e1, e2 ):
		cg1 = e1.collision_geometry()
		cg2 = e2.collision_geometry()
		coll = cg1.collide( cg2 )
		if coll.collided:
			e1.resolve( e2, coll )