Example #1
0
def onnx_loss(a,model,target):
    '''
    input:
    a graph node dictionary
    model: graph model
    target: label

    load other nodes of onnx
    '''
    for i in model.graph.node:
        if (i.op_type == 'Constant'):
            pass
            # do nothing
        if (i.op_type == 'LeakyRelu'):
            a[str(i.output[0])] = autograd.relu(a[str(i.input[0])])
        elif (i.op_type == 'Relu'):
            a[str(i.output[0])] = autograd.relu(a[str(i.input[0])])
        elif (i.op_type == 'Softmax'):
            a[str(i.output[0])] = autograd.softmax(a[str(i.input[0])])
        elif (i.op_type == 'Add'):
            if(str(i.input[1])[-1] == 'b'):
                a[str(i.output[0])] = autograd.add_bias(a[str(i.input[0])], a[str(i.input[1])])
            else:
                a[str(i.output[0])] = autograd.add(a[str(i.input[0])],a[str(i.input[1])])
        elif (i.op_type == 'MatMul'):
            a[str(i.output[0])] = autograd.matmul(a[str(i.input[0])], a[str(i.input[1])])

    loss = autograd.cross_entropy(a['Y'], target)
    return loss
Example #2
0
    def run(model, modeldic, layer,inputs):
        '''
            input: input for singa model
            load other nodes of onnx
            '''
        supportLayer = ['Linear','Conv','MaxPool','AveragePool','BatchNormalization']
        #supportLayer = ['Conv', 'MaxPool', 'AveragePool', 'BatchNormalization']
        oper=modeldic

        for counter,i in enumerate(model.graph.input):
            oper[i.name] = inputs[counter]
        for i in model.graph.node:
            if (i.op_type == 'Relu'):
                oper[str(i.output[0])] = autograd.relu(oper[str(i.input[0])])
            elif (i.op_type == 'Softmax'):
                oper[str(i.output[0])] = autograd.softmax(oper[str(i.input[0])])
            elif (i.op_type == 'Add'):
                oper[str(i.output[0])] = autograd.add(oper[str(i.input[0])], oper[str(i.input[1])])
            elif (i.op_type == 'MatMul'):
                oper[str(i.output[0])] = autograd.matmul(oper[str(i.input[0])], oper[str(i.input[1])])
            elif (i.op_type == 'Flatten'):
                oper[str(i.output[0])] = autograd.flatten(oper[str(i.input[0])])
            elif(i.op_type == 'Concat'):
                oper[str(i.output[0])] = autograd.cat((oper[str(i.input[0])], oper[str(i.input[1])]),int(i.attribute[0].i))
            elif(i.op_type == 'Tanh'):
                oper[str(i.output[0])] = autograd.tanh(oper[str(i.input[0])])
            elif (i.op_type == 'Sigmoid'):
                oper[str(i.output[0])] = autograd.sigmoid(oper[str(i.input[0])])
            elif (i.op_type == 'Mul'):
                oper[str(i.output[0])] = autograd.mul(oper[str(i.input[0])],oper[str(i.input[1])])
            elif (i.op_type in supportLayer):
                oper[str(i.output[0])] = layer[str(i.output[0])](oper[str(i.input[0])])
        out =[]
        for counter,i in enumerate(model.graph.output):
            out.append(modeldic[i.name])
        return out
Example #3
0
    print("train_label_shape:", label.shape)

    inputs = Tensor(data=data)
    target = Tensor(data=label)

    w0 = Tensor(shape=(2, 3), requires_grad=True, stores_grad=True)
    w0.gaussian(0.0, 0.1)
    b0 = Tensor(shape=(1, 3), requires_grad=True, stores_grad=True)
    b0.set_value(0.0)

    w1 = Tensor(shape=(3, 2), requires_grad=True, stores_grad=True)
    w1.gaussian(0.0, 0.1)
    b1 = Tensor(shape=(1, 2), requires_grad=True, stores_grad=True)
    b1.set_value(0.0)

    sgd = optimizer.SGD(0.05)
    # training process
    for i in range(1001):
        x = autograd.matmul(inputs, w0)
        x = autograd.add_bias(x, b0)
        x = autograd.relu(x)
        x = autograd.matmul(x, w1)
        x = autograd.add_bias(x, b1)
        x = autograd.softmax(x)
        loss = autograd.cross_entropy(x, target)
        for p, gp in autograd.backward(loss):
            sgd.apply(0, gp, p, "")

        if i % 100 == 0:
            print("training loss = ", tensor.to_numpy(loss)[0])
Example #4
0
    print('train_label_shape:', label.shape)

    inputs = Tensor(data=data)
    target = Tensor(data=label)

    w0 = Tensor(shape=(2, 3), requires_grad=True, stores_grad=True)
    w0.gaussian(0.0, 0.1)
    b0 = Tensor(shape=(1, 3), requires_grad=True, stores_grad=True)
    b0.set_value(0.0)

    w1 = Tensor(shape=(3, 2), requires_grad=True, stores_grad=True)
    w1.gaussian(0.0, 0.1)
    b1 = Tensor(shape=(1, 2), requires_grad=True, stores_grad=True)
    b1.set_value(0.0)

    sgd = optimizer.SGD(0.05)
    # training process
    for i in range(1001):
        x = autograd.matmul(inputs, w0)
        x = autograd.add_bias(x, b0)
        x = autograd.relu(x)
        x = autograd.matmul(x, w1)
        x = autograd.add_bias(x, b1)
        x = autograd.softmax(x)
        loss = autograd.cross_entropy(x, target)
        for p, gp in autograd.backward(loss):
            sgd.apply(0, gp, p, '')

        if (i % 100 == 0):
            print('training loss = ', tensor.to_numpy(loss)[0])
Example #5
0
label = to_categorical(label, 2).astype(np.float32)
print('train_data_shape:', data.shape)
print('train_label_shape:', label.shape)

inputs = Tensor(data=data)
target = Tensor(data=label)

linear1 = autograd.Linear(3, 2)
linear2 = autograd.Linear(2, 2)
linear3 = autograd.Linear(2, 2)

sgd = optimizer.SGD(0.00)

# training process
for i in range(1):
    x = linear1(inputs)
    x = autograd.relu(x)
    x1 = linear2(x)
    x2 = linear3(x)
    x3 = autograd.add(x1, x2)
    y = autograd.softmax(x3)
    loss = autograd.cross_entropy(y, target)
    gradient = autograd.backward(loss)
    for p, gp in gradient:
        sgd.apply(0, gp, p, '')
    if (i % 100 == 0):
        print('training loss = ', tensor.to_numpy(loss)[0])

model = sonnx.to_onnx_model([inputs], [y])

onnx.save(model, 'linear.onnx')