Example #1
0
def cross_correlate(plan, normalize=True):
    #norm_template = np.sum(plan.template.d_data)
    fft(plan.volume, plan.volume_fft, plan.fwd_plan)
    fft(plan.template.d_data, plan.template_fft, plan.fwd_plan)
    conj(plan.template_fft, overwrite=True)
    volume_fft = plan.volume_fft * plan.template_fft
    ifft(volume_fft, plan.ccc_map, plan.inv_plan)
Example #2
0
def calc_stdV(plan):
    fft(plan.volume, plan.volume_fft, plan.fwd_plan)
    fft(plan.maskPadded, plan.template_fft, plan.fwd_plan)
    conj(plan.template_fft, overwrite=True)
    volume_fft = plan.volume_fft * plan.template_fft
    ifft(volume_fft, plan.stdV, plan.inv_plan, scale=True)
    plan.stdV = plan.stdV / (plan.p)
Example #3
0
def meanVolUnderMask(volume, mask, out, p=1):
    fft(volume, plan.volume_fft, plan.fwd_plan)
    fft(mask, plan.template_fft, plan.fwd_plan)
    conj(plan.template_fft, overwrite=True)
    volume_fft = plan.volume_fft * plan.template_fft
    ifft(volume_fft, out, plan.inv_plan, scale=True)
    out = out / (plan.p)
Example #4
0
def cross_correlate(plan, normalize=True):#volume, template, volume_fft, plan, inv_plan, template_fft, ccc_map, norm_volume, normalize=True,):
    norm_template = np.sum(plan.template.d_data)
    fft(plan.template.d_data, plan.template_fft, plan.fwd_plan)
    conj(plan.template_fft, overwrite=True)
    volume_fft = plan.volume_fft * plan.template_fft
    ifft(volume_fft, plan.ccc_map, plan.inv_plan)
    if normalize:
        plan.ccc_map = plan.ccc_map / plan.norm_volume / norm_template
Example #5
0
def cross_correlate(plan, normalize=True):
    #norm_template = sum(plan.mask.d_data)

    fft(plan.volume, plan.volume_fft, plan.fwd_plan)
    fft(plan.templatePadded, plan.template_fft, plan.fwd_plan)

    conj(plan.template_fft, overwrite=True)
    volume_fft = plan.volume_fft * plan.template_fft
    ifft(volume_fft, plan.ccc_map, plan.inv_plan, scale=True)

    plan.ccc_map /= np.float32(plan.p.get()) * plan.stdV
Example #6
0
    def __calc_A_shift_gpu(self, shift_x, shift_y):

        psis_gpu = self.converter.get_prolates_as_images()  # TODO: need to assert that returns indeed a gpuarray
        n_psis = len(psis_gpu)

        if shift_x == 0 and shift_y == 0:
            return np.eye(n_psis)

        A_shift = gpuarray.zeros((n_psis, n_psis),'complex64')
        non_neg_freqs = self.converter.get_non_neg_freq_inds()

        psis_gpu_non_neg_freqs = psis_gpu[non_neg_freqs]
        psis_non_neg_shifted = circ_shift_kernel.circ_shift(psis_gpu_non_neg_freqs, shift_x, shift_y)

        psis_non_neg_shifted = self.converter.mask_points_inside_the_circle(psis_non_neg_shifted)

        psis_non_neg_shifted = psis_non_neg_shifted.reshape(len(psis_non_neg_shifted), -1)
        psis_gpu = psis_gpu.reshape(n_psis, -1)
        A_shift[non_neg_freqs] = linalg.dot(psis_non_neg_shifted, psis_gpu, transb='C')

        zero_freq_inds = self.converter.get_zero_freq_inds()
        pos_freq_inds  = self.converter.get_pos_freq_inds()
        neg_freq_inds  = self.converter.get_neg_freq_inds()

        A_shift[neg_freq_inds, zero_freq_inds] = A_shift[pos_freq_inds, zero_freq_inds]
        A_shift[neg_freq_inds, pos_freq_inds] = A_shift[pos_freq_inds, neg_freq_inds]
        A_shift[neg_freq_inds, neg_freq_inds] = A_shift[pos_freq_inds, pos_freq_inds]

        A_shift[neg_freq_inds] = linalg.conj(A_shift[neg_freq_inds])
        # TODO: get rid of the transpose
        # return np.transpose(A_shift).copy()
        return np.transpose(A_shift).get().copy()
Example #7
0
 def test_conj_complex128(self):
     a = np.array([[1+1j, 2-2j, 3+3j, 4-4j],
                   [5+5j, 6-6j, 7+7j, 8-8j]], np.complex128)
     a_gpu = gpuarray.to_gpu(a)
     r_gpu = linalg.conj(a_gpu)
     assert np.all(np.conj(a) == r_gpu.get())
Example #8
0
 def test_conj_complex128(self):
     a = np.array([[1+1j, 2-2j, 3+3j, 4-4j],
                   [5+5j, 6-6j, 7+7j, 8-8j]], np.complex128)
     a_gpu = gpuarray.to_gpu(a)
     r_gpu = linalg.conj(a_gpu)
     assert np.all(np.conj(a) == r_gpu.get())