Example #1
0
    def test_kneighbors(self):
        """Test k neighbor searches for all k-neighbors estimators"""

        nn = NearestNeighbors()
        nn.fit(self.X)

        lof = LocalOutlierFactor(n_neighbors=5)
        lof.fit(self.X)

        knn = KNeighborsClassifier()
        knn.fit(self.X, self.y)

        knnr = KNeighborsRegressor()
        knnr.fit(self.X, self.modes_location)

        for neigh in [nn, knn, knnr, lof]:

            dist, links = neigh.kneighbors(self.X[:4])

            np.testing.assert_array_equal(links, [[0, 7, 21, 23, 15],
                                                  [1, 12, 19, 18, 17],
                                                  [2, 17, 22, 27, 26],
                                                  [3, 4, 9, 5, 25]])

            graph = neigh.kneighbors_graph(self.X[:4])

            dist_kneigh = lp_distance(self.X[0], self.X[7])

            np.testing.assert_array_almost_equal(dist[0, 1], dist_kneigh)

            for i in range(30):
                self.assertEqual(graph[0, i] == 1.0, i in links[0])
                self.assertEqual(graph[0, i] == 0.0, i not in links[0])
Example #2
0
    def test_score_scalar_response(self):

        neigh = KNeighborsRegressor()

        neigh.fit(self.X, self.modes_location)
        r = neigh.score(self.X, self.modes_location)
        np.testing.assert_almost_equal(r, 0.9975889963743335)
Example #3
0
    def test_functional_response_basis(self):
        knnr = KNeighborsRegressor(weights='distance', n_neighbors=5)
        response = self.X.to_basis(Fourier(domain_range=(-1, 1), n_basis=10))
        knnr.fit(self.X, response)

        res = knnr.predict(self.X)
        np.testing.assert_array_almost_equal(res.coefficients,
                                             response.coefficients)
Example #4
0
    def test_knn_functional_response(self):
        knnr = KNeighborsRegressor(n_neighbors=1)

        knnr.fit(self.X, self.X)

        res = knnr.predict(self.X)
        np.testing.assert_array_almost_equal(res.data_matrix,
                                             self.X.data_matrix)
Example #5
0
    def test_knn_functional_response_sklearn(self):
        # Check sklearn metric
        knnr = KNeighborsRegressor(n_neighbors=1, metric='euclidean',
                                   multivariate_metric=True)
        knnr.fit(self.X, self.X)

        res = knnr.predict(self.X)
        np.testing.assert_array_almost_equal(res.data_matrix,
                                             self.X.data_matrix)
Example #6
0
    def test_knn_functional_response_precomputed(self):
        knnr = KNeighborsRegressor(n_neighbors=4, weights='distance',
                                   metric='precomputed')
        d = pairwise_distance(lp_distance)
        distances = d(self.X[:4], self.X[:4])

        knnr.fit(distances, self.X[:4])

        res = knnr.predict(distances)
        np.testing.assert_array_almost_equal(res.data_matrix,
                                             self.X[:4].data_matrix)
Example #7
0
    def test_functional_response_custom_weights(self):

        def weights(weights):

            return np.array([w == 0 for w in weights], dtype=float)

        knnr = KNeighborsRegressor(weights=weights, n_neighbors=5)
        response = self.X.to_basis(Fourier(domain_range=(-1, 1), n_basis=10))
        knnr.fit(self.X, response)

        res = knnr.predict(self.X)
        np.testing.assert_array_almost_equal(res.coefficients,
                                             response.coefficients)
Example #8
0
    def test_predict_regressor(self):
        """Test scalar regression, predics mode location"""

        # Dummy test, with weight = distance, only the sample with distance 0
        # will be returned, obtaining the exact location
        knnr = KNeighborsRegressor(weights='distance')
        rnnr = RadiusNeighborsRegressor(weights='distance', radius=.1)

        knnr.fit(self.X, self.modes_location)
        rnnr.fit(self.X, self.modes_location)

        np.testing.assert_array_almost_equal(knnr.predict(self.X),
                                             self.modes_location)
        np.testing.assert_array_almost_equal(rnnr.predict(self.X),
                                             self.modes_location)
Example #9
0
    def test_functional_regression_distance_weights(self):

        knnr = KNeighborsRegressor(
            weights='distance', n_neighbors=10)
        knnr.fit(self.X[:10], self.X[:10])
        res = knnr.predict(self.X[11])

        d = pairwise_distance(lp_distance)
        distances = d(self.X[:10], self.X[11]).flatten()

        weights = 1 / distances
        weights /= weights.sum()

        response = self.X[:10].mean(weights=weights)
        np.testing.assert_array_almost_equal(res.data_matrix,
                                             response.data_matrix)
Example #10
0
    def test_score_functional_response(self):

        neigh = KNeighborsRegressor()

        y = 5 * self.X + 1
        neigh.fit(self.X, y)
        r = neigh.score(self.X, y)
        np.testing.assert_almost_equal(r, 0.962651178452408)

        # Weighted case and basis form
        y = y.to_basis(Fourier(domain_range=y.domain_range[0], n_basis=5))
        neigh.fit(self.X, y)

        r = neigh.score(self.X[:7], y[:7],
                        sample_weight=4 * [1. / 5] + 3 * [1. / 15])
        np.testing.assert_almost_equal(r, 0.9982527586114364)
Example #11
0
#

X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    test_size=.1,
                                                    random_state=28)

##############################################################################
#
# We will try make a prediction using 5 neighbors and the :math:`\mathbb{L}^2`
# distance. In this case, to calculate
# the response we will use a mean of the response, weighted by their distance
# to the test sample.
#

knn = KNeighborsRegressor(n_neighbors=5, weights='distance')
knn.fit(X_train, y_train)

##############################################################################
#
# We can predict values for the test partition using
# :meth:`~skfda.ml.regression.KNeighborsFunctionalRegressor.predict`. The
# following figure shows the real precipitation curves, in dashed line, and
# the predicted ones.
#

y_pred = knn.predict(X_test)

# Plot prediction
fig = y_pred.plot()
fig.axes[0].set_prop_cycle(None)  # Reset colors
                                                    random_state=7)

##############################################################################
#
# Firstly we will try make a prediction with the default values of the
# estimator, using 5 neighbors and the :math:`\mathbb{L}^2` distance.
#
# We can fit the :class:`~skfda.ml.regression.KNeighborsRegressor` in the
# same way than the
# sklearn estimators. This estimator is an extension of the sklearn
# :class:`~sklearn.neighbors.KNeighborsRegressor`, but accepting a
# :class:`~skfda.representation.grid.FDataGrid` as input instead of an array with
# multivariate data.
#

knn = KNeighborsRegressor(weights='distance')
knn.fit(X_train, y_train)

##############################################################################
#
# We can predict values for the test partition using
# :meth:`~skfda.ml.regression.KNeighborsScalarRegressor.predict`.
#

pred = knn.predict(X_test)
print(pred)

##############################################################################
#
# The following figure compares the real precipitations with the predicted
# values.