Example #1
0
    def project(self, interp, facets=None):
        """Perform :math:`L^2` projection onto the basis on the boundary.

        The values of the interior DOFs remain zero.

        Parameters
        ----------
        interp
            An object of type :class:`~skfem.element.DiscreteField` which is a
            function (to be projected) evaluated at global quadrature points at
            the boundary of the domain.  If a function is given, then
            :class:`~skfem.element.DiscreteField` is created by passing
            an array of global quadrature point locations to the function.
        facets
            Optionally perform the projection on a subset of facets.  The
            values of the remaining DOFs are zero.

        """
        from skfem.utils import solve, condense

        M, f = self._projection(interp)

        if facets is not None:
            return solve(*condense(M, f, I=self.get_dofs(facets=facets)))
        return solve(*condense(M, f, I=self.get_dofs(facets=self.find)))
Example #2
0
    def project(self, interp, elements=None):
        """Perform :math:`L^2` projection onto the basis.

        See :ref:`l2proj` for more information.

        Parameters
        ----------
        interp
            An object of type :class:`~skfem.element.DiscreteField` which is a
            function (to be projected) evaluated at global quadrature points.
            If a function is given, then :class:`~skfem.element.DiscreteField`
            is created by passing an array of global quadrature point locations
            to the function.
        elements
            Optionally perform the projection on a subset of elements.  The
            values of the remaining DOFs are zero.

        """
        from skfem.utils import solve, condense

        M, f = self._projection(interp)

        if elements is not None:
            return solve(*condense(M, f, I=self.get_dofs(elements=elements)))
        elif self.tind is not None:
            return solve(*condense(M, f, I=self.get_dofs(elements=self.tind)))
        return solve(M, f)
Example #3
0
    def calculate_axial_from_stress(self, R, J):
        """
      Calculate the axial force by integrating sigma_zz over the area

      Parameters:
        R       final residual
        J       final jacobian
    """
        #pylint: disable=no-value-for-parameter, invalid-unary-operand-type
        if self.state_np1.ndim == 1:
            dx = self.state_np1.basis.interpolate(
                self.state_np1.mesh.p[0]
            )[0][0] * self.state_np1.basis.dx * 2.0 * np.pi
        else:
            dx = self.state_np1.basis.dx

        fake_force = self._internal_force(self.state_np1.tangent[:, :, 2, 2])
        de = utils.solve(*utils.condense(J, fake_force, D=self.edofs),
                         solver=utils.solver_direct_scipy())
        fake_strain = self.calculate_strain(de)
        integrand1 = np.einsum('iijk',
                               self.state_np1.tangent[2, 2] * fake_strain)
        integrand2 = self.state_np1.tangent[2, 2, 2, 2]

        self.state_np1.force = np.sum(self.state_np1.stress[2, 2] * dx)
        self.state_np1.stiffness = np.sum(
            (-integrand1 + integrand2) * dx) / self.state_np1.h
Example #4
0
    def linear_solve(self, J, R):
        """
      Do the linear solve for a particular jacobian and residual

      Parameters:
        J       Jacobian sparse matrix
        R       residual vector
    """
        #pylint: disable=no-value-for-parameter
        return utils.solve(*utils.condense(J, R, D=self.edofs),
                           solver=utils.solver_direct_scipy())
Example #5
0
def test_simple_cg_solver():

    m = MeshTri().refined(3)
    basis = CellBasis(m, ElementTriP1())

    A0 = laplace.coo_data(basis)
    A1 = laplace.assemble(basis)

    f = unit_load.assemble(basis)

    D = m.boundary_nodes()

    x1 = solve(*condense(A1, f, D=D))

    f[D] = 0

    x0 = A0.solve(f, D=D)

    assert_almost_equal(x0, x1)
Example #6
0
inner_conductor_outer_surface_basis = FacetBasis(
    mesh, element, facets=mesh.boundaries['inner_conductor_outer_surface'])
outer_conductor_inner_surface_basis = FacetBasis(
    mesh, element, facets=mesh.boundaries['outer_conductor_inner_surface'])

dofs = {
    'boundary':
    global_basis.get_dofs(mesh.boundaries['boundary']),
    'inner_conductor_outer_surface':
    global_basis.get_dofs(mesh.boundaries['inner_conductor_outer_surface']),
    'outer_conductor_inner_surface':
    global_basis.get_dofs(mesh.boundaries['outer_conductor_inner_surface'])
}

# functional to compute the integral of a load vector over the domain
load_integral = solve(asm(mass, global_basis), asm(unit_load, global_basis))

# all materials have a relative permeability of effectively 1
K_mag = asm(laplace, global_basis) * (1 / mu0)

# pass 1A through the conductors
current = 1

J_inner_conductor = asm(unit_load, inner_conductor_basis)
# scale inner conductor current density to have an integral
# equal to current over domain
J_inner_conductor *= current / np.dot(J_inner_conductor, load_integral)

J_outer_conductor = asm(unit_load, outer_conductor_basis)
# scale outer conductor current density to have an integral
# equal to -current over domain