Example #1
0
 def test_mtry(self, boston_X, boston_y, mtry):
     forest = GRFForestRegressor(mtry=mtry)
     forest.fit(boston_X, boston_y)
     if mtry is not None:
         assert forest.mtry_ == mtry
     else:
         assert forest.mtry_ == 6
Example #2
0
 def test_fit(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     with pytest.raises(NotFittedError):
         check_is_fitted(forest)
     forest.fit(boston_X, boston_y)
     check_is_fitted(forest)
     assert hasattr(forest, "grf_forest_")
     assert hasattr(forest, "mtry_")
     assert forest.criterion == "mse"
Example #3
0
 def test_with_X_nan(self, boston_X, boston_y):
     boston_X_nan = boston_X.copy()
     index = np.random.choice(boston_X_nan.size, 100, replace=False)
     boston_X_nan.ravel()[index] = np.nan
     assert np.sum(np.isnan(boston_X_nan)) == 100
     forest = GRFForestRegressor()
     forest.fit(boston_X_nan, boston_y)
     pred = forest.predict(boston_X_nan)
     assert len(pred) == boston_X_nan.shape[0]
Example #4
0
def test_shap_regressor(boston_X, boston_y):
    from shap import TreeExplainer

    forest = GRFForestRegressor(enable_tree_details=True)
    forest.fit(boston_X, boston_y)

    with shap_patch():
        explainer = TreeExplainer(model=forest, data=boston_X)
    shap_values = explainer.shap_values(boston_X, check_additivity=False)
    print(shap_values)
Example #5
0
 def test_serialize(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     # not fitted
     tf = tempfile.TemporaryFile()
     pickle.dump(forest, tf)
     tf.seek(0)
     forest = pickle.load(tf)
     forest.fit(boston_X, boston_y)
     # fitted
     tf = tempfile.TemporaryFile()
     pickle.dump(forest, tf)
     tf.seek(0)
     new_forest = pickle.load(tf)
     pred = new_forest.predict(boston_X)
     assert len(pred) == boston_X.shape[0]
Example #6
0
def test_plot():
    from matplotlib import pyplot as plt
    from sklearn.datasets import load_boston
    from sklearn.tree import plot_tree

    boston_X, boston_y = load_boston(return_X_y=True)
    forest = GRFForestRegressor(enable_tree_details=True)
    forest.fit(boston_X, boston_y)
    estimator = forest.get_estimator(0)
    plt.figure()
    plot_tree(
        estimator,
        impurity=False,  # impurity not yet implemented
    )
    plt.savefig(
        "tree.svg",
        bbox_inches="tight",  # don't truncate
    )
Example #7
0
 def test_estimators_(self, boston_X, boston_y):
     forest = GRFForestRegressor(n_estimators=10)
     with pytest.raises(AttributeError):
         _ = forest.estimators_
     forest.fit(boston_X, boston_y)
     with pytest.raises(ValueError):
         _ = forest.estimators_
     forest = GRFForestRegressor(n_estimators=10, enable_tree_details=True)
     forest.fit(boston_X, boston_y)
     estimators = forest.estimators_
     assert len(estimators) == 10
     assert isinstance(estimators[0], GRFTreeRegressor)
     check_is_fitted(estimators[0])
Example #8
0
 def test_alpha(self, boston_X, boston_y, alpha):
     forest = GRFForestRegressor(alpha=alpha)
     if alpha <= 0 or alpha >= 0.25:
         with pytest.raises(ValueError):
             forest.fit(boston_X, boston_y)
     else:
         forest.fit(boston_X, boston_y)
Example #9
0
 def test_honesty_fraction(self, boston_X, boston_y, honesty_fraction):
     forest = GRFForestRegressor(honesty=True,
                                 honesty_fraction=honesty_fraction,
                                 honesty_prune_leaves=True)
     if honesty_fraction <= 0 or honesty_fraction >= 1:
         with pytest.raises(RuntimeError):
             forest.fit(boston_X, boston_y)
     else:
         forest.fit(boston_X, boston_y)
Example #10
0
    def test_equalize_cluster_weights(self, boston_X, boston_y, boston_cluster,
                                      equalize_cluster_weights):
        forest = GRFForestRegressor(
            equalize_cluster_weights=equalize_cluster_weights)
        forest.fit(boston_X, boston_y, cluster=boston_cluster)
        if equalize_cluster_weights:
            assert forest.samples_per_cluster_ == 20
        else:
            assert forest.samples_per_cluster_ == boston_y.shape[0] - 20

        if equalize_cluster_weights:
            with pytest.raises(ValueError):
                forest.fit(boston_X,
                           boston_y,
                           cluster=boston_cluster,
                           sample_weight=boston_y)

        forest.fit(boston_X, boston_y, cluster=None)
        assert forest.samples_per_cluster_ == 0
Example #11
0
 def test_get_kernel_weights(self, boston_X, boston_y):
     X_train, X_test, y_train, y_test = train_test_split(boston_X,
                                                         boston_y,
                                                         test_size=0.33,
                                                         random_state=42)
     forest = GRFForestRegressor()
     forest.fit(X_train, y_train)
     weights = forest.get_kernel_weights(X_test)
     assert weights.shape[0] == X_test.shape[0]
     assert weights.shape[1] == X_train.shape[0]
     oob_weights = forest.get_kernel_weights(X_train, True)
     assert oob_weights.shape[0] == X_train.shape[0]
     assert oob_weights.shape[1] == X_train.shape[0]
Example #12
0
 def test_predict_oob(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y, compute_oob_predictions=True)
     pred = np.atleast_1d(
         np.squeeze(np.array(forest.grf_forest_["predictions"])))
     assert len(pred) == boston_X.shape[0]
Example #13
0
 def test_from_forest(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     tree = GRFTreeRegressor.from_forest(forest=forest, idx=0)
     tree.predict(boston_X)
Example #14
0
 def test_predict(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     pred = forest.predict(boston_X)
     assert len(pred) == boston_X.shape[0]
Example #15
0
 def test_honesty(self, boston_X, boston_y, honesty):
     forest = GRFForestRegressor(honesty=honesty)
     forest.fit(boston_X, boston_y)
Example #16
0
 def test_get_feature_importances(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     fi = forest.get_feature_importances()
     assert len(fi) == boston_X.shape[1]
Example #17
0
 def test_get_split_frequencies(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     sf = forest.get_split_frequencies()
     assert sf.shape[1] == boston_X.shape[1]
Example #18
0
 def test_honesty_prune_leaves(self, boston_X, boston_y,
                               honesty_prune_leaves):
     forest = GRFForestRegressor(honesty=True,
                                 honesty_prune_leaves=honesty_prune_leaves)
     forest.fit(boston_X, boston_y)
Example #19
0
 def test_check_estimator(self):
     check_estimator(GRFForestRegressor())
Example #20
0
 def test_clone(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     clone(forest)
Example #21
0
 def test_init(self):
     _ = GRFForestRegressor()
Example #22
0
    def test_sample_fraction(self, boston_X, boston_y,
                             sample_fraction):  # and ci_group_size
        forest = GRFForestRegressor(sample_fraction=sample_fraction,
                                    ci_group_size=1)
        if sample_fraction <= 0 or sample_fraction > 1:
            with pytest.raises(ValueError):
                forest.fit(boston_X, boston_y)
        else:
            forest.fit(boston_X, boston_y)

        forest = GRFForestRegressor(sample_fraction=sample_fraction,
                                    ci_group_size=2)
        if sample_fraction <= 0 or sample_fraction > 0.5:
            with pytest.raises(ValueError):
                forest.fit(boston_X, boston_y)
        else:
            forest.fit(boston_X, boston_y)
Example #23
0
 def test_get_estimator(self, boston_X, boston_y):
     forest = GRFForestRegressor(n_estimators=10)
     with pytest.raises(NotFittedError):
         _ = forest.get_estimator(idx=0)
     forest.fit(boston_X, boston_y)
     with pytest.raises(ValueError):
         _ = forest.get_estimator(idx=0)
     forest = GRFForestRegressor(n_estimators=10, enable_tree_details=True)
     forest.fit(boston_X, boston_y)
     estimator = forest.get_estimator(0)
     check_is_fitted(estimator)
     assert isinstance(estimator, GRFTreeRegressor)
     with pytest.raises(IndexError):
         _ = forest.get_estimator(idx=20)