def __init__(self):
     self.y_true = [0, 1, 200, 0, 1, 200, 0, 1, 200, 0, 1, 200]
     self.y_pred = [0, 1, 200, 1, 200, 0, 1, 1, 1, 0, 1, 0]
     self.target_variable = FullSOC()
 def full_soc(self):
     return FullSOC()
job_postings = list(job_samples)

random.shuffle(job_postings)

train_data = job_postings[:30]
test_data = job_postings[30:]

train_bytes = json.dumps(train_data).encode()
test_bytes = json.dumps(test_data).encode()


logging.info("Loading Embedding Model")
model_storage = ModelStorage(FSStore('/your/model/path'))
w2v = model_storage.load_model(model_name='your_model_name')

full_soc = FullSOC()

def basic_filter(doc):
    """
    Return the document except for the document which soc is unknown or empty or not in the
    soc code pool of current O*Net version
    """
    if full_soc.filter_func(doc) and doc['onet_soc_code'] in full_soc.choices:
        return doc
    else:
        return None

class JobGenerator(object):
    def __init__(self, data):
        self.data = data