def __init__(self): self.y_true = [0, 1, 200, 0, 1, 200, 0, 1, 200, 0, 1, 200] self.y_pred = [0, 1, 200, 1, 200, 0, 1, 1, 1, 0, 1, 0] self.target_variable = FullSOC()
def full_soc(self): return FullSOC()
job_postings = list(job_samples) random.shuffle(job_postings) train_data = job_postings[:30] test_data = job_postings[30:] train_bytes = json.dumps(train_data).encode() test_bytes = json.dumps(test_data).encode() logging.info("Loading Embedding Model") model_storage = ModelStorage(FSStore('/your/model/path')) w2v = model_storage.load_model(model_name='your_model_name') full_soc = FullSOC() def basic_filter(doc): """ Return the document except for the document which soc is unknown or empty or not in the soc code pool of current O*Net version """ if full_soc.filter_func(doc) and doc['onet_soc_code'] in full_soc.choices: return doc else: return None class JobGenerator(object): def __init__(self, data): self.data = data