Example #1
0
def test_ellipse_trivial():
    img = np.zeros((2, 2), "uint8")
    rr, cc = ellipse(0.5, 0.5, 0.5, 0.5)
    img[rr, cc] = 1
    img_correct = np.array([[0, 0], [0, 0]])
    assert_array_equal(img, img_correct)

    img = np.zeros((2, 2), "uint8")
    rr, cc = ellipse(0.5, 0.5, 1.1, 1.1)
    img[rr, cc] = 1
    img_correct = np.array([[1, 1], [1, 1]])
    assert_array_equal(img, img_correct)

    img = np.zeros((3, 3), "uint8")
    rr, cc = ellipse(1, 1, 0.9, 0.9)
    img[rr, cc] = 1
    img_correct = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]])
    assert_array_equal(img, img_correct)

    img = np.zeros((3, 3), "uint8")
    rr, cc = ellipse(1, 1, 1.1, 1.1)
    img[rr, cc] = 1
    img_correct = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
    assert_array_equal(img, img_correct)

    img = np.zeros((3, 3), "uint8")
    rr, cc = ellipse(1, 1, 1.5, 1.5)
    img[rr, cc] = 1
    img_correct = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
    assert_array_equal(img, img_correct)
Example #2
0
def test_ellipse_rotation_symmetry():
    img1 = np.zeros((150, 150), dtype=np.uint8)
    img2 = np.zeros((150, 150), dtype=np.uint8)
    for angle in range(0, 180, 15):
        img1.fill(0)
        rr, cc = ellipse(80, 70, 60, 40, rotation=np.deg2rad(angle))
        img1[rr, cc] = 1
        img2.fill(0)
        rr, cc = ellipse(80, 70, 60, 40, rotation=np.deg2rad(angle + 180))
        img2[rr, cc] = 1
        assert_array_equal(img1, img2)
 def add_Ellipse(self, scale = 1, thick = 5):
     """h for vertical, w for horizontal"""
     h = self.e_h = self.base_e_h * scale
     w = self.e_w = self.base_e_w * scale
     
     # e and lv should not be too close
     shift = self.e_w/8
     center = self.lv_center + self.lv_radius_vec
     center[1] += shift
     
     self.e_center = center 
     self.e_thick = thick
     self.e_big  = d.ellipse(center[0], center[1], h, w)
     self.e_small= d.ellipse(center[0], center[1], h-thick, w-thick)
Example #4
0
def makeFakeVessels(imgsize=(512, 512), background=230):
    """
    create and save a matrix with whitish background and randomly selected vessel sizes and save matrices generated as images of format png
    """
    nVes = 20
    mu = 20
    sigma = 5
    minw = 5
    sx, sy = imgsize
    vasc = np.ones((sx, sy), dtype=np.uint8) * background

    for i in range(nVes):
        cx, cy = random.uniform(0, sx), random.uniform(0, sy)
        r1, r2 = 0, 0
        while (r1 < minw) or (r2 < minw):
            np.random.seed(20)
            r1 = np.random.normal(mu, sigma)
            r2 = np.random.normal(mu, sigma)
        print(r1, r2)

        rr, cc = ellipse(cy, cx, r1, r2)
        if np.any(rr >= sy):
            ix = rr < sy
            rr, cc = rr[ix], cc[ix]
        if np.any(cc >= sx):
            ix = cc < sx
            rr, cc = rr[ix], cc[ix]
        vasc[rr, cc] = 1  # make circle blackish
    return vasc
Example #5
0
def test_ellipse():
    img = np.zeros((15, 15), 'uint8')

    rr, cc = ellipse(7, 7, 3, 7)
    img[rr, cc] = 1

    img_ = np.array(
      [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
       [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
       [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
       [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    )

    assert_array_equal(img, img_)
Example #6
0
def test_ellipse_with_shape():
    img = np.zeros((15, 15), 'uint8')

    rr, cc = ellipse(7, 7, 3, 10, shape=img.shape)
    img[rr, cc] = 1

    img_ = np.array(
      [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
    )

    assert_array_equal(img, img_)
Example #7
0
def test_ellipse_negative():
    rr, cc = ellipse(-3, -3, 1.7, 1.7)
    rr_, cc_ = np.nonzero(
        np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]])
    )

    assert_array_equal(rr, rr_ - 5)
    assert_array_equal(cc, cc_ - 5)
def setup():
    image = np.zeros((30, 30, 3), dtype=float)
    image[draw.ellipse(15, 15, 5, 8)] = 1

    state = np.zeros((30, 30, 2))
    state[15, 15] = (1, 1)
    state[0, 0] = (0, 1)

    return image, state
Example #9
0
 def get_indices(self):
     """Returns a set of points that lie inside the picked polygon."""
     if not self.center:
         raise ValueError("Cannot get ellipse indices before the dimensions are defined")
     
     x, y = self.center
     w = self.width
     h = self.height
     return ellipse(y, x, h/2., w/2., self.im)
Example #10
0
def test_ellipse_rotated():
    img = np.zeros((1000, 1200), dtype=np.uint8)
    for rot in range(0, 180, 10):
        img.fill(0)
        angle = np.deg2rad(rot)
        rr, cc = ellipse(500, 600, 200, 400, rotation=angle)
        img[rr, cc] = 1
        # estimate orientation of ellipse
        angle_estim = np.round(regionprops(img)[0].orientation, 3) % (np.pi / 2)
        assert_almost_equal(angle_estim, angle % (np.pi / 2), 2)
Example #11
0
 def test_rotate_largest_region(self):
     test_img = np.zeros((1000,1000), dtype=np.uint8)
     rr, cc = circle(100,100,50)
     test_img[rr,cc] = 1
     rr, cc = ellipse(500,500,300,100)
     test_img[rr, cc] = 1
     rotated = gzapi.rotate_largest_region(test_img)
     largest_region = gzapi.get_largest_region(rotated)
     self.assertAlmostEqual(largest_region.orientation, 0)
     self.assertIsNone(gzapi.rotate_largest_region(None))
Example #12
0
def sim_wire(angle, gaussian_sigma=1, noise_level=0, L=100):
    "Draw a wire with blur and optional noise."
    # Noise level should be from 0 to 1. 0.02 is reasonable.
    shape = (L, L)

    a = np.zeros(shape, dtype=np.uint8)
    a[draw.ellipse(L//2, L//2, L//24, L//4)] = 100  # horizontal ellipse
    a = filter.gaussian_filter(a, gaussian_sigma)
    b = transform.rotate(a, angle)
    b += noise_level*np.random.randn(*shape)
    return b
Example #13
0
 def _measure_fluorescence(self, time_period, time_index, image_slice, channel_annotation):
     mask = np.zeros((image_slice.height * 2, image_slice.width))
     old_pole, new_pole = channel_annotation.get_cell_bounds(time_period, time_index)
     ellipse_minor_radius = int(0.80 * image_slice.height)
     ellipse_major_radius = int((new_pole - old_pole) / 2.0) * 0.8
     centroid_y = int(image_slice.height)
     centroid_x = int((new_pole + old_pole) / 2.0)
     rr, cc = draw.ellipse(centroid_y, centroid_x, ellipse_minor_radius, ellipse_major_radius)
     mask[rr, cc] = 1
     mean, stddev, median, area, centroid = self._calculate_cell_intensity_statistics(mask.astype("int"), image_slice.image_data)
     return mean, stddev, median, area, centroid
Example #14
0
def test_growcut_basic():
    image = np.zeros((30, 30, 3), dtype=float)
    image[draw.ellipse(15, 15, 5, 8)] = 1

    state = np.zeros((30, 30, 2))
    state[15, 15] = (1, 1)
    state[0, 0] = (0, 1)

    npt.assert_array_equal(image[..., 0],
                           growcut(image, state, window_size=3, max_iter=20))

    npt.assert_array_equal(image[..., 0],
                           growcut_fast(image, state, window_size=3, max_iter=20))
Example #15
0
def ellipse(width, height, dtype=np.uint8):
    """Generates a flat, ellipse-shaped structuring element.

    Every pixel along the perimeter of ellipse satisfies
    the equation ``(x/width+1)**2 + (y/height+1)**2 = 1``.

    Parameters
    ----------
    width : int
        The width of the ellipse-shaped structuring element.
    height : int
        The height of the ellipse-shaped structuring element.

    Other Parameters
    ----------------
    dtype : data-type
        The data type of the structuring element.

    Returns
    -------
    selem : ndarray
        The structuring element where elements of the neighborhood
        are 1 and 0 otherwise.

    Examples
    --------
    >>> from skimage.morphology import selem
    >>> selem.ellipse(5, 3)
    array([[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
           [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=uint8)

    """
    selem = np.zeros((2 * height + 1, 2 * width + 1), dtype=dtype)
    rows, cols = draw.ellipse(height, width, height + 1, width + 1)
    selem[rows, cols] = 1
    return selem
Example #16
0
def ellipseMask(maskImg, ellipse_yradius, ellipse_xradius):
    boxsize = maskImg.get_xsize()
    maskArray = EMNumPy.em2numpy(maskImg)
    
    if (boxsize <= ellipse_yradius * 2 or boxsize <= ellipse_xradius * 2):
        print "ERROR: ellipse_xradius or ellipse_yradius is larger than the boxsize of particles."
        sys.exit()
    
    #from skimage.draw import ellipse
    #Generate coordinates of pixels within ellipse.
    ####################################
    '''
    ellipse_xradius=random.randint(ellipse_xradius-10,ellipse_xradius+10)
    print ellipse_xradius
    ellipse_yradius=random.randint(ellipse_yradius-10,ellipse_yradius+10)
    print ellipse_yradius
    '''
    size = max([ellipse_xradius, ellipse_yradius]) * 2 + 4
    cx = size/2
    cy = size/2
    ellipseArray = np.zeros((size, size), dtype=np.uint8)
    rr, cc = ellipse(cy, cx, ellipse_yradius, ellipse_xradius)
    ellipseArray[rr, cc] = 1
    
    m, n = ellipseArray.shape
    assert m==n
    
    if (m%2 == 0):
        pad_before = (boxsize - m)/2
        pad_after = (boxsize - m)/2
    else:
        pad_before = (boxsize - m)/2
        pad_after = (boxsize - m)/2+1
        
    ellipseArrayPad = np.pad(ellipseArray, (pad_before, pad_after), mode='constant')
    ellipseImg = EMNumPy.numpy2em(ellipseArrayPad)
    return ellipseImg
import matplotlib.pyplot as plt
import numpy as np
from skimage import measure
from skimage.draw import ellipse
from skimage.transform import rotate

image = np.zeros((600, 600))
rr, cc = ellipse(300, 350, 100, 220)
image[rr, cc] = 1
image = rotate(image, angle=15, order=0)

label_img = measure.label(input=image)
print(label_img.shape, label_img.max(), label_img.min(), np.unique(label_img))
print(np.sum(image - label_img))  #
regions = measure.regionprops(label_image=label_img)
print(regions)
fig, ax = plt.subplots()
ax.imshow(image, cmap=plt.cm.gray)  # pylint: disable=E1101
Example #18
0
def read_roi(roi_obj):
    """Parses an individual ImageJ ROI

    _getX lines with no assignment are bytes within the imageJ roi file
    format that contain additional information that can be extracted if
    needed. In line comments label what they are.

    This is based on:
    http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiDecoder.java.html
    http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiEncoder.java.html

    Parameters
    ----------
    roi_obj : file object
        File object containing a single ImageJ ROI

    Returns
    -------
    ROI
        Returns a parsed ROI object (dictionary)

    Raises
    ------
    IOError
        If there is an error reading the roi file object
    ValueError
        If unable to parse ROI

    """

    sub_pixel_resolution = 128

    # Other options that are not currently used
    # SPLINE_FIT = 1
    # DOUBLE_HEADED = 2
    # OUTLINE = 4
    # OVERLAY_LABELS = 8
    # OVERLAY_NAMES = 16
    # OVERLAY_BACKGROUNDS = 32
    # OVERLAY_BOLD = 64
    # DRAW_OFFSET = 256

    pos = [4]

    def _get8():
        """Read 1 byte from the roi file object"""
        pos[0] += 1
        s = roi_obj.read(1)
        if not s:
            raise IOError('read_imagej_roi: Unexpected EOF')
        return ord(s)

    def _get16():
        """Read 2 bytes from the roi file object"""
        b0 = _get8()
        b1 = _get8()
        return (b0 << 8) | b1

    def _get16signed():
        """Read a signed 16 bit integer from 2 bytes from roi file object"""
        b0 = _get8()
        b1 = _get8()
        out = (b0 << 8) | b1
        # This is a signed integer, so need to check if the value is
        # positive or negative.
        if b0 > 127:
            out = out - 65536
        return out

    def _get32():
        """Read 4 bytes from the roi file object"""
        s0 = _get16()
        s1 = _get16()
        return (s0 << 16) | s1

    def _getfloat():
        """Read a float from the roi file object"""
        v = np.int32(_get32())
        return v.view(np.float32)

    def _getcoords(z=0):
        """Get the next coordinate of an roi polygon"""
        if options & sub_pixel_resolution:
            getc = _getfloat
            points = np.empty((n_coordinates, 3), dtype=np.float32)
        else:
            getc = _get16
            points = np.empty((n_coordinates, 3), dtype=np.int16)
        points[:, 0] = [getc() for _ in range(n_coordinates)]
        points[:, 1] = [getc() for _ in range(n_coordinates)]
        points[:, 0] += left
        points[:, 1] += top
        points[:, 2] = z
        return points

    magic = roi_obj.read(4)
    if magic != b'Iout':
        raise IOError('read_imagej_roi: Magic number not found')

    _get16()  # version

    roi_type = _get8()
    # Discard extra second Byte:
    _get8()

    if not (0 <= roi_type < 11):
        raise ValueError('read_imagej_roi: \
                          ROI type {} not supported'.format(roi_type))

    top = _get16signed()
    left = _get16signed()
    bottom = _get16signed()
    right = _get16signed()
    n_coordinates = _get16()

    x1 = _getfloat()  # x1
    y1 = _getfloat()  # y1
    x2 = _getfloat()  # x2
    y2 = _getfloat()  # y2
    _get16()  # stroke width
    _get32()  # shape roi size
    _get32()  # stroke color
    _get32()  # fill color
    subtype = _get16()
    if subtype != 0 and subtype != 3:
        raise ValueError('read_imagej_roi: \
                          ROI subtype {} not supported (!= 0)'.format(subtype))
    options = _get16()
    if subtype == 3 and roi_type == 7:
        # ellipse aspect ratio
        aspect_ratio = _getfloat()
    else:
        _get8()  # arrow style
        _get8()  # arrow head size
        _get16()  # rectangle arc size
    z = _get32()  # position
    if z > 0:
        z -= 1  # Multi-plane images start indexing at 1 instead of 0
    _get32()  # header 2 offset

    if roi_type == 0:
        # Polygon
        coords = _getcoords(z)
        coords = coords.astype('float')
        return {'polygons': coords}
    elif roi_type == 1:
        # Rectangle
        coords = [[left, top, z], [right, top, z], [right, bottom, z],
                  [left, bottom, z]]
        coords = np.array(coords).astype('float')
        return {'polygons': coords}
    elif roi_type == 2:
        # Oval
        width = right - left
        height = bottom - top

        # 0.5 moves the mid point to the center of the pixel
        x_mid = (right + left) / 2.0 - 0.5
        y_mid = (top + bottom) / 2.0 - 0.5
        mask = np.zeros((z + 1, right, bottom), dtype=bool)
        for y, x in product(np.arange(top, bottom), np.arange(left, right)):
            mask[z, x, y] = ((x - x_mid) ** 2 / (width / 2.0) ** 2 +
                             (y - y_mid) ** 2 / (height / 2.0) ** 2 <= 1)
        return {'mask': mask}
    elif roi_type == 7:
        if subtype == 3:
            # ellipse
            mask = np.zeros((1, right+10, bottom+10), dtype=bool)
            r_radius = np.sqrt((x2-x1)**2+(y2-y1)**2)/2.0
            c_radius = r_radius*aspect_ratio
            r = (x1+x2)/2-0.5
            c = (y1+y2)/2-0.5
            shpe = mask.shape
            orientation = np.arctan2(y2-y1, x2-x1)
            X, Y = ellipse(r, c, r_radius, c_radius, shpe[1:], orientation)
            mask[0, X, Y] = True
            return {'mask': mask}
        else:
            # Freehand
            coords = _getcoords(z)
            coords = coords.astype('float')
            return {'polygons': coords}

    else:
        try:
            coords = _getcoords(z)
            coords = coords.astype('float')
            return {'polygons': coords}
        except BaseException:
            raise ValueError(
                'read_imagej_roi: ROI type {} not supported'.format(roi_type))
Example #19
0
    def bp_removal_2d(obj_tmp, cy, cx, fwhm, sig, protect_psf, verbose):

        n_x = obj_tmp.shape[1]
        n_y = obj_tmp.shape[0]

        # Squash the frame if twice less resolved vertically than horizontally
        if half_res_y:
            if n_y % 2 != 0:
                msg = 'The input frames do not have of an even number of rows. '
                msg2 = 'Hence, you should not use option half_res_y = True'
                raise ValueError(msg + msg2)
            n_y = int(n_y / 2)
            cy = int(cy / 2)
            frame = obj_tmp.copy()
            obj_tmp = np.zeros([n_y, n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[2 * yy]

        #1/ Stddev of background
        _, _, stddev = sigma_clipped_stats(obj_tmp, sigma=2.5)

        #2/ Define each annulus, its median and stddev

        ymax = max(cy, n_y - cy)
        xmax = max(cx, n_x - cx)
        if half_res_y:
            ymax *= 2
        rmax = np.sqrt(ymax**2 + xmax**2)
        # the annuli definition is optimized for Airy rings
        ann_width = max(1.5, 0.61 * fwhm)
        nrad = int(rmax / ann_width) + 1
        d_bord_max = max(n_y - cy, cy, n_x - cx, cx)
        if half_res_y:
            d_bord_max = max(2 * (n_y - cy), 2 * cy, n_x - cx, cx)

        big_ell_frame = np.zeros_like(obj_tmp)
        sma_ell_frame = np.zeros_like(obj_tmp)
        ann_frame_cumul = np.zeros_like(obj_tmp)
        n_neig = np.zeros(nrad)
        med_neig = np.zeros(nrad)
        std_neig = np.zeros(nrad)
        neighbours = np.zeros([nrad, n_y * n_x])

        for rr in range(nrad):
            if rr > int(d_bord_max / ann_width):
                # just to merge farthest annuli with very few elements
                rr_big = nrad
                rr_sma = int(d_bord_max / ann_width)
            else:
                rr_big = rr
                rr_sma = rr
            if half_res_y:
                big_ell_idx = ellipse(cy=cy,
                                      cx=cx,
                                      yradius=((rr_big + 1) * ann_width) / 2,
                                      xradius=(rr_big + 1) * ann_width,
                                      shape=(n_y, n_x))
                if rr != 0:
                    small_ell_idx = ellipse(cy=cy,
                                            cx=cx,
                                            yradius=(rr_sma * ann_width) / 2,
                                            xradius=rr_sma * ann_width,
                                            shape=(n_y, n_x))
            else:
                big_ell_idx = circle(cy,
                                     cx,
                                     radius=(rr_big + 1) * ann_width,
                                     shape=(n_y, n_x))
                if rr != 0:
                    small_ell_idx = circle(cy,
                                           cx,
                                           radius=rr_sma * ann_width,
                                           shape=(n_y, n_x))
            big_ell_frame[big_ell_idx] = 1
            if rr != 0: sma_ell_frame[small_ell_idx] = 1
            ann_frame = big_ell_frame - sma_ell_frame
            n_neig[rr] = ann_frame[np.where(ann_frame)].shape[0]
            neighbours[rr, :n_neig[rr]] = obj_tmp[np.where(ann_frame)]
            ann_frame_cumul[np.where(ann_frame)] = rr

            # We delete iteratively max and min outliers in each annulus,
            # so that the annuli median and stddev are not corrupted by bpixs
            neigh = neighbours[rr, :n_neig[rr]]
            n_removal = 0
            n_pix_init = neigh.shape[0]
            while neigh.shape[0] > 10 and n_removal < n_pix_init / 10:
                min_neigh = np.amin(neigh)
                if reject_outliers(neigh,
                                   min_neigh,
                                   m=5,
                                   stddev=stddev,
                                   min_thr=min_thr * stddev,
                                   mid_thr=mid_thr * stddev):
                    min_idx = np.argmin(neigh)
                    neigh = np.delete(neigh, min_idx)
                    n_removal += 1
                else:
                    max_neigh = np.amax(neigh)
                    if reject_outliers(neigh,
                                       max_neigh,
                                       m=5,
                                       stddev=stddev,
                                       min_thr=min_thr * stddev,
                                       mid_thr=mid_thr * stddev):
                        max_idx = np.argmax(neigh)
                        neigh = np.delete(neigh, max_idx)
                        n_removal += 1
                    else:
                        break
            n_neig[rr] = neigh.shape[0]
            neighbours[rr, :n_neig[rr]] = neigh
            neighbours[rr, n_neig[rr]:] = 0
            med_neig[rr] = np.median(neigh)
            std_neig[rr] = np.std(neigh)

        #3/ Create a tuple-array with coordinates of a circle of radius 1.8*fwhm
        # centered on the provided coordinates of the star
        if protect_psf:
            if half_res_y:
                circl_new = ellipse(cy,
                                    cx,
                                    yradius=0.9 * fwhm,
                                    xradius=1.8 * fwhm,
                                    shape=(n_y, n_x))
            else:
                circl_new = circle(cy, cx, radius=1.8 * fwhm, shape=(n_y, n_x))
        else:
            circl_new = []

        #4/ Loop on all pixels to check bpix
        bpix_map = np.zeros_like(obj_tmp)
        obj_tmp_corr = obj_tmp.copy()

        for yy in range(n_y):
            for xx in range(n_x):
                if half_res_y:
                    rad = np.sqrt((2 * (cy - yy))**2 + (cx - xx)**2)
                else:
                    rad = dist(cy, cx, yy, xx)
                rr = int(rad / ann_width)
                neigh = neighbours[rr, :n_neig[rr]]
                dev = max(stddev, min(std_neig[rr], med_neig[rr]))

                # check min_thr
                if obj_tmp[yy, xx] < min_thr * stddev:
                    bpix_map[yy, xx] = 1
                    # Gaussian noise
                    #obj_tmp_corr[yy,xx] = med_neig[rr] +dev*np.random.randn()
                    # Poisson noise
                    rand_fac = 2 * (np.random.rand() - 0.5)
                    obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                          np.sqrt(np.abs(med_neig[rr]))*rand_fac

                # check median +- sig*stddev
                elif (obj_tmp[yy, xx] < med_neig[rr] - sig * dev
                      or obj_tmp[yy, xx] > med_neig[rr] + sig * dev):
                    bpix_map[yy, xx] = 1
                    # Gaussian noise
                    #obj_tmp_corr[yy,xx] = med_neig[rr] +dev*np.random.randn()
                    # Poisson noise
                    rand_fac = 2 * (np.random.rand() - 0.5)
                    obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                          np.sqrt(np.abs(med_neig[rr]))*rand_fac

                # check mid_thr and neighbours
                else:
                    min_el = max(2, 0.05 * n_neig[rr])
                    if (obj_tmp[yy, xx] < mid_thr * stddev
                            and neigh[neigh < (mid_thr + 5) * stddev].shape[0]
                            < min_el):
                        bpix_map[yy, xx] = 1
                        # Gaussian noise
                        #obj_tmp_corr[yy,xx] = med_neig[rr] + \
                        #                      dev*np.random.randn()
                        # Poisson noise
                        rand_fac = 2 * (np.random.rand() - 0.5)
                        obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                      np.sqrt(np.abs(med_neig[rr]))*rand_fac

        #5/ Count bpix and uncorrect if within the circle
        nbpix_tot = np.sum(bpix_map)
        nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
        bpix_map[circl_new] = 0
        obj_tmp_corr[circl_new] = obj_tmp[circl_new]
        if verbose:
            print(nbpix_tot, ' bpix in total, and ', nbpix_tbc, ' corrected.')

        # Unsquash all the frames
        if half_res_y:
            frame = obj_tmp_corr.copy()
            frame_bpix = bpix_map.copy()
            n_y = 2 * n_y
            obj_tmp_corr = np.zeros([n_y, n_x])
            bpix_map = np.zeros([n_y, n_x])
            ann_frame = ann_frame_cumul.copy()
            ann_frame_cumul = np.zeros([n_y, n_x])
            for yy in range(n_y):
                obj_tmp_corr[yy] = frame[int(yy / 2)]
                bpix_map[yy] = frame_bpix[int(yy / 2)]
                ann_frame_cumul[yy] = ann_frame[int(yy / 2)]

        return obj_tmp_corr, bpix_map, ann_frame_cumul
Example #20
0
 def add_ellipse(self, xy_c, wx, wy, idx=1):
     rr, cc = ellipse(*xy_c, wx, wy, shape=self.mask.shape)
     self.mask[rr, cc] = idx
Example #21
0
    def bp_removal_2d(obj_tmp, cy, cx, fwhm, sig, protect_psf, verbose):

        n_x = obj_tmp.shape[1]
        n_y = obj_tmp.shape[0]

        # Squash the frame if twice less resolved vertically than horizontally
        if half_res_y:
            if n_y % 2 != 0:
                msg = 'The input frames do not have of an even number of rows. '
                msg2 = 'Hence, you should not use option half_res_y = True'
                raise ValueError(msg+msg2)
            n_y = int(n_y/2)
            cy = int(cy/2)
            frame = obj_tmp.copy()
            obj_tmp = np.zeros([n_y,n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[2*yy]

        #1/ Stddev of background
        _, _, stddev = sigma_clipped_stats(obj_tmp, sigma=2.5)

        #2/ Define each annulus, its median and stddev
        
        ymax = max(cy, n_y-cy)
        xmax = max(cx, n_x-cx)
        if half_res_y:
            ymax *= 2
        rmax = np.sqrt(ymax**2+xmax**2)
        # the annuli definition is optimized for Airy rings
        ann_width = max(1.5, 0.61*fwhm) 
        nrad = int(rmax/ann_width)+1
        d_bord_max = max(n_y-cy, cy, n_x-cx, cx)
        if half_res_y:
            d_bord_max = max(2*(n_y-cy), 2*cy, n_x-cx, cx)

        big_ell_frame = np.zeros_like(obj_tmp)
        sma_ell_frame = np.zeros_like(obj_tmp)
        ann_frame_cumul = np.zeros_like(obj_tmp)
        n_neig = np.zeros(nrad)
        med_neig = np.zeros(nrad)
        std_neig = np.zeros(nrad)
        neighbours = np.zeros([nrad,n_y*n_x])

        for rr in range(nrad):
            if rr > int(d_bord_max/ann_width):
                # just to merge farthest annuli with very few elements 
                rr_big = nrad  
                rr_sma = int(d_bord_max/ann_width)
            else: 
                rr_big = rr
                rr_sma= rr
            if half_res_y:
                big_ell_idx = ellipse(cy=cy, cx=cx, 
                                      yradius=((rr_big+1)*ann_width)/2, 
                                      xradius=(rr_big+1)*ann_width, 
                                      shape=(n_y,n_x))
                if rr != 0:
                    small_ell_idx = ellipse(cy=cy, cx=cx, 
                                            yradius=(rr_sma*ann_width)/2, 
                                            xradius=rr_sma*ann_width, 
                                            shape=(n_y,n_x))
            else:
                big_ell_idx = circle(cy, cx, radius=(rr_big+1)*ann_width,
                                     shape=(n_y,n_x))
                if rr != 0:
                    small_ell_idx = circle(cy, cx, radius=rr_sma*ann_width, 
                                           shape=(n_y,n_x))
            big_ell_frame[big_ell_idx] = 1
            if rr!=0: sma_ell_frame[small_ell_idx] = 1
            ann_frame = big_ell_frame - sma_ell_frame
            n_neig[rr] = ann_frame[np.where(ann_frame)].shape[0]
            neighbours[rr,:n_neig[rr]] = obj_tmp[np.where(ann_frame)]
            ann_frame_cumul[np.where(ann_frame)] = rr

            # We delete iteratively max and min outliers in each annulus, 
            # so that the annuli median and stddev are not corrupted by bpixs
            neigh = neighbours[rr,:n_neig[rr]]
            n_removal = 0
            n_pix_init = neigh.shape[0]
            while neigh.shape[0] > 10 and n_removal < n_pix_init/10:
                min_neigh = np.amin(neigh)
                if reject_outliers(neigh, min_neigh, m=5, stddev=stddev,
                                   min_thr=min_thr*stddev,
                                   mid_thr=mid_thr*stddev):
                    min_idx = np.argmin(neigh)
                    neigh = np.delete(neigh,min_idx)
                    n_removal += 1
                else:
                    max_neigh = np.amax(neigh)
                    if reject_outliers(neigh, max_neigh, m=5, stddev=stddev,
                                       min_thr=min_thr*stddev, 
                                       mid_thr=mid_thr*stddev):
                        max_idx = np.argmax(neigh)
                        neigh = np.delete(neigh,max_idx)
                        n_removal += 1
                    else: break
            n_neig[rr] = neigh.shape[0]
            neighbours[rr,:n_neig[rr]] = neigh
            neighbours[rr,n_neig[rr]:] = 0
            med_neig[rr] = np.median(neigh)
            std_neig[rr] = np.std(neigh)
        
        #3/ Create a tuple-array with coordinates of a circle of radius 1.8*fwhm
        # centered on the provided coordinates of the star
        if protect_psf:
            if half_res_y: 
                circl_new = ellipse(cy, cx, yradius=0.9*fwhm, 
                                    xradius=1.8*fwhm, shape=(n_y,n_x))
            else: 
                circl_new = circle(cy, cx, radius=1.8*fwhm, 
                                   shape=(n_y, n_x))
        else: circl_new = []

        #4/ Loop on all pixels to check bpix
        bpix_map = np.zeros_like(obj_tmp)
        obj_tmp_corr = obj_tmp.copy()
        
        for yy in range(n_y):
            for xx in range(n_x):
                if half_res_y:
                    rad = np.sqrt((2*(cy-yy))**2+(cx-xx)**2)
                else:
                    rad = dist(cy, cx, yy, xx)
                rr = int(rad/ann_width)
                neigh = neighbours[rr,:n_neig[rr]]
                dev = max(stddev,min(std_neig[rr],med_neig[rr]))

                # check min_thr
                if obj_tmp[yy,xx] < min_thr*stddev:
                    bpix_map[yy,xx] = 1
                    # Gaussian noise
                    #obj_tmp_corr[yy,xx] = med_neig[rr] +dev*np.random.randn()
                    # Poisson noise
                    rand_fac= 2*(np.random.rand()-0.5)
                    obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                          np.sqrt(np.abs(med_neig[rr]))*rand_fac

                # check median +- sig*stddev
                elif (obj_tmp[yy,xx] < med_neig[rr]-sig*dev or 
                      obj_tmp[yy,xx] > med_neig[rr]+sig*dev):
                    bpix_map[yy,xx] = 1  
                    # Gaussian noise
                    #obj_tmp_corr[yy,xx] = med_neig[rr] +dev*np.random.randn()
                    # Poisson noise
                    rand_fac= 2*(np.random.rand()-0.5)
                    obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                          np.sqrt(np.abs(med_neig[rr]))*rand_fac

                # check mid_thr and neighbours
                else:
                    min_el = max(2, 0.05*n_neig[rr])
                    if (obj_tmp[yy,xx] < mid_thr*stddev and 
                        neigh[neigh<(mid_thr+5)*stddev].shape[0] < min_el):
                            bpix_map[yy,xx] = 1
                            # Gaussian noise
                            #obj_tmp_corr[yy,xx] = med_neig[rr] + \
                            #                      dev*np.random.randn()
                            # Poisson noise
                            rand_fac = 2*(np.random.rand()-0.5)
                            obj_tmp_corr[yy,xx] = med_neig[rr] + \
                                          np.sqrt(np.abs(med_neig[rr]))*rand_fac

        #5/ Count bpix and uncorrect if within the circle
        nbpix_tot = np.sum(bpix_map)
        nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
        bpix_map[circl_new] = 0
        obj_tmp_corr[circl_new] = obj_tmp[circl_new]
        if verbose:
            print(nbpix_tot, ' bpix in total, and ', nbpix_tbc, ' corrected.')

        # Unsquash all the frames
        if half_res_y:
            frame = obj_tmp_corr.copy()
            frame_bpix = bpix_map.copy()
            n_y = 2*n_y
            obj_tmp_corr = np.zeros([n_y,n_x])
            bpix_map = np.zeros([n_y,n_x])
            ann_frame = ann_frame_cumul.copy()
            ann_frame_cumul = np.zeros([n_y,n_x])
            for yy in range(n_y):
                obj_tmp_corr[yy] = frame[int(yy/2)]
                bpix_map[yy] = frame_bpix[int(yy/2)]
                ann_frame_cumul[yy] = ann_frame[int(yy/2)]

        return obj_tmp_corr, bpix_map, ann_frame_cumul
Example #22
0
    def bp_removal_2d(obj_tmp, cy, cx, fwhm, sig, protect_psf, verbose):    
        n_x = obj_tmp.shape[1]
        n_y = obj_tmp.shape[0]

        if half_res_y:
            if n_y%2 != 0: 
                msg = 'The input frames do not have of an even number of rows. '
                msg2 = 'Hence, you should not use option half_res_y = True'
                raise ValueError(msg+msg2)
            n_y = int(n_y/2)
            frame = obj_tmp.copy()
            obj_tmp = np.zeros([n_y,n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[2*yy]
            
        fwhm_round = int(round(fwhm))
        # This should reduce the chance to accidently correct a bright planet:
        if fwhm_round % 2 == 0:
            neighbor_box = max(3, fwhm_round+1) 
        else:
            neighbor_box = max(3, fwhm_round)
        nneig = sum(np.arange(3, neighbor_box+2, 2))

        
        #1/ Create a tuple-array with coordinates of a circle of radius 1.8*fwhm
        # centered on the approximate coordinates of the star
        if protect_psf:
            if half_res_y: 
                circl_new = ellipse(int(cy/2), cx, yradius=0.9*fwhm, 
                                    xradius=1.8*fwhm, shape=(n_y, n_x))
            else: circl_new = circle(cy, cx, radius=1.8*fwhm, 
                                     shape=(n_y, n_x))
        else: circl_new = []
        
        #2/ Compute stddev of background
        # empirically 2.5 is best to find stddev of background noise
        _, _, stddev = sigma_clipped_stats(obj_tmp, sigma=2.5) 

        #3/ Create a bad pixel map, by detecting them with find_outliers
        bpix_map = find_outliers(obj_tmp, sig_dist=sig, stddev=stddev, 
                                 neighbor_box=neighbor_box,min_thr=min_thr,
                                 mid_thr=mid_thr)
        nbpix_tot = np.sum(bpix_map)
        nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
        bpix_map[circl_new] = 0
        bpix_map_cumul = np.zeros_like(bpix_map)
        bpix_map_cumul[:] = bpix_map[:]
        nit = 0

        #4/ Loop over the bpix correction with sigma_filter, until 0 bpix left
        while nbpix_tbc > 0 and nit < max_nit:
            nit = nit+1
            if verbose:
                print("Iteration {}: {} bpix in total, {} to be "
                      "corrected".format(nit, nbpix_tot, nbpix_tbc))
            obj_tmp = sigma_filter(obj_tmp, bpix_map, neighbor_box=neighbor_box,
                                   min_neighbors=nneig, verbose=verbose)
            bpix_map = find_outliers(obj_tmp, sig_dist=sig, in_bpix=bpix_map,
                                     stddev=stddev, neighbor_box=neighbor_box,
                                     min_thr=min_thr,mid_thr=mid_thr)
            nbpix_tot = np.sum(bpix_map)
            nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
            bpix_map[circl_new] = 0
            bpix_map_cumul = bpix_map_cumul+bpix_map

        if verbose:
            print('All bad pixels are corrected.')
            
        if half_res_y:
            frame = obj_tmp.copy()
            frame_bpix = bpix_map_cumul.copy()
            n_y = 2*n_y
            obj_tmp = np.zeros([n_y,n_x])
            bpix_map_cumul = np.zeros([n_y,n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[int(yy/2)]
                bpix_map_cumul[yy] = frame_bpix[int(yy/2)]

        return obj_tmp, bpix_map_cumul
This example shows how to measure properties of labelled image regions.

"""
import math
import matplotlib.pyplot as plt
import numpy as np

from skimage.draw import ellipse
from skimage.measure import label, regionprops
from skimage.transform import rotate


image = np.zeros((600, 600))

rr, cc = ellipse(300, 350, 100, 220)
image[rr, cc] = 1

image = rotate(image, angle=15, order=0)

label_img = label(image)
regions = regionprops(label_img)

fig, ax = plt.subplots()
ax.imshow(image, cmap=plt.cm.gray)

for props in regions:
    y0, x0 = props.centroid
    orientation = props.orientation
    x1 = x0 + math.cos(orientation) * 0.5 * props.major_axis_length
    y1 = y0 - math.sin(orientation) * 0.5 * props.major_axis_length
Example #24
0
def draw_mask(img, percentage_x=100, percentage_y=100, offset_x=0, offset_y=0, rotation=0, rectangle=True):
    """
    Convenience wrapper for `skimage.draw.ellipse` and `skimage.draw.polygon`.
    Draws an ellipse at (center + ``offset``) of ``img`` with major and
    minor axes as a percentage of ``img.shape``. Alternatively, draws a rectangle
    centered at the offset that covers the given percentage of the height and width
    of the image.

    Parameters
    ----------
    img : array
        Image array that you want to draw a mask on

    percentage_x : float
        What percentage of the x-dimension of ``img`` do you want the x-axis to cover? Can
        be greater than zero
    percentage_y : float
    offset_x : float
        From the middle, what percentage of the width of the picture do you want the center of the
        ellipse to be? Positive is left.
    offset_y : float
        Positive is up.
    rotation : float
        In [-pi, pi]. See ``skimage.draw.ellipse''
    rectangel : bool
        Make a rectangular mask instead of an elliptical mask?

    Returns
    -------
    A binary array with pixels in an ellipse.

    References
    ----------
    See source and examples for `skimage.draw.ellipse` and `skimage.draw.polygon`.

    """
    ydim, xdim = img.shape
    mask = np.zeros((ydim, xdim))

    # Convert percentages to fractions
    offset_x = (xdim * offset_x/100)
    offset_y = (ydim * offset_y/100)
    percentage_x = percentage_x/100
    percentage_y = percentage_y/100

    if rectangle is False:
        x_rad = np.floor((img.shape[1]/2) * percentage_x)
        y_rad = np.floor((img.shape[0]/2) * percentage_y)

        x_center = img.shape[1]//2 + offset_x
        y_center = img.shape[0]//2 - offset_y


        [x, y] = draw.ellipse(y_center, x_center, y_rad, x_rad, shape = img.shape, rotation=rotation)

    else:
        ysub = ydim * (1 - percentage_y)
        y1 = max(ysub/2 - offset_y, 0)
        y2 = min(ydim - ysub/2 - offset_y, ydim)
        r_coords = np.array([y1, y1, y2, y2, y1])

        xsub = xdim * (1 - percentage_x)
        x1 = max(xsub/2 + offset_x,0)
        x2 = min(xdim - xsub/2 + offset_x, xdim)
        c_coords = np.array([x1, x2, x2, x1, x1])

        x, y = draw.polygon(r_coords, c_coords)

    mask[x, y] = 1

    return(mask)
Example #25
0
.. [1] http://en.wikipedia.org/wiki/Corner_detection
.. [2] http://en.wikipedia.org/wiki/Interest_point_detection

"""
from matplotlib import pyplot as plt

from skimage import data
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform
from skimage.draw import ellipse


tform = AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7,
                        translation=(210, 50))
image = warp(data.checkerboard(), tform.inverse, output_shape=(350, 350))
rr, cc = ellipse(310, 175, 10, 100)
image[rr, cc] = 1
image[180:230, 10:60] = 1
image[230:280, 60:110] = 1

coords = corner_peaks(corner_harris(image), min_distance=5)
coords_subpix = corner_subpix(image, coords, window_size=13)

fig, ax = plt.subplots()
ax.imshow(image, interpolation='nearest', cmap=plt.cm.gray)
ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
ax.axis((0, 350, 350, 0))
plt.show()
ax3.set_axis_off()
ax3.set_title('Masked pixels')


plt.show()

##################################################
# Solid masks are another illustrating example. In this case, we have a 
# limited view of an image and an offset image. The masks for these images 
# need not be the same. The `masked_register_translation` function will correctly identify
# which part of the images should be compared.
image = data.camera()
shift = (-22, 13)

rr1, cc1 = draw.ellipse(259, 248, 
                      r_radius = 125, c_radius = 100, 
                      shape = image.shape)

rr2, cc2 = draw.ellipse(300, 200, 
                        r_radius = 110, c_radius = 180, 
                        shape = image.shape)

mask1 = np.zeros_like(image, dtype = np.bool)
mask2 = np.zeros_like(image, dtype = np.bool)
mask1[rr1, cc1] = True
mask2[rr2, cc2] = True

offset_image = ndi.shift(image, shift)
image *= mask1
offset_image *= mask2
Example #27
0
def draw_ellipse(img, center, axis):
    rr, cc = draw.ellipse(center[0], center[1], axis[0], axis[1],
                          shape=img.shape)
    img[rr, cc] = 1
    return img
def axis_likelyhood_surface(data, kernel_width = 5, center_margin = 8, num_peaks = 10, num_circles = 20, upscale = 1.5, minradius = 15, maxradius = 65, radstep = 2):

    ximagesize=data[0]['data'].shape[1]
    yimagesize=data[0]['data'].shape[2]

    maxradius = max(int(maxradius / np.max(data[0]['metadata']['PixelSpacing'])),1)
    minradius = max(int(minradius / np.max(data[0]['metadata']['PixelSpacing'])),1)
    radstep = max(int(radstep / np.max(data[0]['metadata']['PixelSpacing'])),1)

    xsurface=np.tile(range(ximagesize),(yimagesize,1)).T
    ysurface=np.tile(range(yimagesize),(ximagesize,1))
    lsurface=np.zeros((ximagesize,yimagesize))

    allcenters = []
    allaccums = []
    allradii = []


    for ddi in data:
        outdata=ddi['data'].copy()
        ff1 = fftn(outdata)
        fh = np.absolute(ifftn(ff1[1, :, :]))
        fh[fh < 0.1* np.max(fh)] =0.0
        image=img_as_ubyte(fh/np.max(fh))
        #image = fh/np.max(fh)

        # find hough circles
        edges = canny(image, sigma=3, low_threshold=10, high_threshold=50)
        #edges = canny(image)

        # Detect two radii
        hough_radii = np.arange(minradius, maxradius, radstep)
        hough_res = hough_circle(edges, hough_radii)

        if hough_res.any():
            centers = []
            accums = []
            radii = []

            for radius, h in zip(hough_radii, hough_res):
                # For each radius, extract num_peaks circles
                peaks = peak_local_max(h, num_peaks=num_peaks)
                centers.extend(peaks)
                accums.extend(h[peaks[:, 0], peaks[:, 1]])
                radii.extend([radius] * num_peaks)

            # Keep the most prominent num_circles circles
            sorted=np.argsort(accums)[::-1][:num_circles]

            for idx in sorted:
                center_x, center_y = centers[idx]
                allcenters.append(centers[idx])
                allradii.append(radii[idx])
                allaccums.append(accums[idx])
                brightness=accums[idx]
                lsurface = lsurface + brightness* np.exp(-((xsurface-center_x)**2 + (ysurface-center_y)**2)/kernel_width**2)

    lsurface=lsurface/lsurface.max()

    # select most likely ROI center
    x_axis, y_axis = np.unravel_index(lsurface.argmax(), lsurface.shape)

    # determine ROI radius
    x_radius = 0
    y_radius = 0
    for idx in range(len(allcenters)):
        xshift=np.abs(allcenters[idx][0]-x_axis)
        yshift=np.abs(allcenters[idx][1]-y_axis)
        if (xshift <= center_margin) & (yshift <= center_margin):
            x_radius = np.max((x_radius,allradii[idx]+xshift))
            y_radius = np.max((y_radius,allradii[idx]+yshift))

    x_radius = upscale * x_radius
    y_radius = upscale * y_radius

    #x_radius = 1.5*maxradius
    #y_radius = 1.5*maxradius

    ROImask = np.zeros_like(lsurface)
    [rr,cc] = ellipse(x_axis, y_axis, x_radius, y_radius)
    dum=(rr < ximagesize) & (rr>=0) & (cc < yimagesize) & (cc>=0)
    rr=rr[dum]
    cc=cc[dum]
    ROImask[rr,cc]=1.

    return lsurface, ROImask, (x_axis, y_axis), (x_radius, y_radius)
Example #29
0
    def bp_removal_2d(obj_tmp, cy, cx, fwhm, sig, protect_psf, verbose):
        n_x = obj_tmp.shape[1]
        n_y = obj_tmp.shape[0]

        if half_res_y:
            if n_y % 2 != 0:
                msg = 'The input frames do not have of an even number of rows. '
                msg2 = 'Hence, you should not use option half_res_y = True'
                raise ValueError(msg + msg2)
            n_y = int(n_y / 2)
            frame = obj_tmp.copy()
            obj_tmp = np.zeros([n_y, n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[2 * yy]

        fwhm_round = int(round(fwhm))
        # This should reduce the chance to accidently correct a bright planet:
        if fwhm_round % 2 == 0:
            neighbor_box = max(3, fwhm_round + 1)
        else:
            neighbor_box = max(3, fwhm_round)
        nneig = sum(np.arange(3, neighbor_box + 2, 2))

        #1/ Create a tuple-array with coordinates of a circle of radius 1.8*fwhm
        # centered on the approximate coordinates of the star
        if protect_psf:
            if half_res_y:
                circl_new = ellipse(int(cy / 2),
                                    cx,
                                    yradius=0.9 * fwhm,
                                    xradius=1.8 * fwhm,
                                    shape=(n_y, n_x))
            else:
                circl_new = circle(cy, cx, radius=1.8 * fwhm, shape=(n_y, n_x))
        else:
            circl_new = []

        #2/ Compute stddev of background
        # empirically 2.5 is best to find stddev of background noise
        _, _, stddev = sigma_clipped_stats(obj_tmp, sigma=2.5)

        #3/ Create a bad pixel map, by detecting them with find_outliers
        bpix_map = find_outliers(obj_tmp,
                                 sig_dist=sig,
                                 stddev=stddev,
                                 neighbor_box=neighbor_box,
                                 min_thr=min_thr,
                                 mid_thr=mid_thr)
        nbpix_tot = np.sum(bpix_map)
        nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
        bpix_map[circl_new] = 0
        bpix_map_cumul = np.zeros_like(bpix_map)
        bpix_map_cumul[:] = bpix_map[:]
        nit = 0

        #4/ Loop over the bpix correction with sigma_filter, until 0 bpix left
        while nbpix_tbc > 0 and nit < max_nit:
            nit = nit + 1
            if verbose:
                print("Iteration {}: {} bpix in total, {} to be "
                      "corrected".format(nit, nbpix_tot, nbpix_tbc))
            obj_tmp = sigma_filter(obj_tmp,
                                   bpix_map,
                                   neighbor_box=neighbor_box,
                                   min_neighbors=nneig,
                                   verbose=verbose)
            bpix_map = find_outliers(obj_tmp,
                                     sig_dist=sig,
                                     in_bpix=bpix_map,
                                     stddev=stddev,
                                     neighbor_box=neighbor_box,
                                     min_thr=min_thr,
                                     mid_thr=mid_thr)
            nbpix_tot = np.sum(bpix_map)
            nbpix_tbc = nbpix_tot - np.sum(bpix_map[circl_new])
            bpix_map[circl_new] = 0
            bpix_map_cumul = bpix_map_cumul + bpix_map

        if verbose:
            print('All bad pixels are corrected.')

        if half_res_y:
            frame = obj_tmp.copy()
            frame_bpix = bpix_map_cumul.copy()
            n_y = 2 * n_y
            obj_tmp = np.zeros([n_y, n_x])
            bpix_map_cumul = np.zeros([n_y, n_x])
            for yy in range(n_y):
                obj_tmp[yy] = frame[int(yy / 2)]
                bpix_map_cumul[yy] = frame_bpix[int(yy / 2)]

        return obj_tmp, bpix_map_cumul
Example #30
0
def test_ellipse_generic():
    img = np.zeros((4, 4), 'uint8')
    rr, cc = ellipse(1.5, 1.5, 1.1, 1.7)
    img[rr, cc] = 1
    img_ = np.array([
        [0, 0, 0, 0],
        [1, 1, 1, 1],
        [1, 1, 1, 1],
        [0, 0, 0, 0],
    ])
    assert_array_equal(img, img_)

    img = np.zeros((5, 5), 'uint8')
    rr, cc = ellipse(2, 2, 1.7, 1.7)
    img[rr, cc] = 1
    img_ = np.array([
        [0, 0, 0, 0, 0],
        [0, 1, 1, 1, 0],
        [0, 1, 1, 1, 0],
        [0, 1, 1, 1, 0],
        [0, 0, 0, 0, 0],
    ])
    assert_array_equal(img, img_)

    img = np.zeros((10, 10), 'uint8')
    rr, cc = ellipse(5, 5, 3, 4)
    img[rr, cc] = 1
    img_ = np.array([
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ])
    assert_array_equal(img, img_)

    img = np.zeros((10, 10), 'uint8')
    rr, cc = ellipse(4.5, 5, 3.5, 4)
    img[rr, cc] = 1
    img_ = np.array([
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ])
    assert_array_equal(img, img_)

    img = np.zeros((15, 15), 'uint8')
    rr, cc = ellipse(7, 7, 3, 7)
    img[rr, cc] = 1
    img_ = np.array([
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
        [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
        [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    ])
    assert_array_equal(img, img_)
Example #31
0
poly = np.array((
    (300, 300),
    (480, 320),
    (380, 430),
    (220, 590),
    (300, 300),
))
rr, cc = polygon(poly[:,0], poly[:,1], img.shape)
img[rr,cc,1] = 255

# fill circle
rr, cc = circle(200, 200, 100, img.shape)
img[rr,cc,:] = (255, 255, 0)

# fill ellipse
rr, cc = ellipse(300, 300, 100, 200, img.shape)
img[rr,cc,2] = 255

# circle
rr, cc = circle_perimeter(120, 400, 15)
img[rr, cc, :] = (255, 0, 0)

# ellipses
rr, cc = ellipse_perimeter(120, 400, 60, 20, orientation=math.pi / 4.)
img[rr, cc, :] = (255, 0, 255)
rr, cc = ellipse_perimeter(120, 400, 60, 20, orientation=-math.pi / 4.)
img[rr, cc, :] = (0, 0, 255)
rr, cc = ellipse_perimeter(120, 400, 60, 20, orientation=math.pi / 2.)
img[rr, cc, :] = (255, 255, 255)

plt.imshow(img)
Example #32
0
# approximate subdivided polygon with Douglas-Peucker algorithm
appr_hand = approximate_polygon(new_hand, tolerance=0.02)

print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand))

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(9, 4))

ax1.plot(hand[:, 0], hand[:, 1])
ax1.plot(new_hand[:, 0], new_hand[:, 1])
ax1.plot(appr_hand[:, 0], appr_hand[:, 1])


# create two ellipses in image
img = np.zeros((800, 800), 'int32')
rr, cc = ellipse(250, 250, 180, 230, img.shape)
img[rr, cc] = 1
rr, cc = ellipse(600, 600, 150, 90, img.shape)
img[rr, cc] = 1

plt.gray()
ax2.imshow(img)

# approximate / simplify coordinates of the two ellipses
for contour in find_contours(img, 0):
    coords = approximate_polygon(contour, tolerance=2.5)
    ax2.plot(coords[:, 1], coords[:, 0], '-r', linewidth=2)
    coords2 = approximate_polygon(contour, tolerance=39.5)
    ax2.plot(coords2[:, 1], coords2[:, 0], '-g', linewidth=2)
    print("Number of coordinates:", len(contour), len(coords), len(coords2))
def process_one(kdata, kdata_ref, acs_out, debug_path='debug_fig_sq'):

    # Transpose to get the channel index in position 0, and rotate the image (if necessary)
    #img_coils = np.rot90(np.transpose(img_coils, (2,0,1)),k=-1,axes=(1,2))
    #print (img_coils.shape)

    # Crop the image (if necessary)
    #img_coils = img_coils[:,:,:]

    # Get the dimensions
    kspace_fully_sampled = kdata
    [num_chan, N1, N2, Nt] = kspace_fully_sampled.shape

    #mosaic(kspace_fully_sampled[:,:,:], 4, 8, 1, [0,2e-5], fig_title='kspace_fully_sampled', fig_size=(15,15), num_rot=0)
    # Get the rssq image
    '''
    kspace_fully_sampled = np.fft.fftshift(np.fft.ifft(np.fft.ifftshift(kspace_fully_sampled, axes=3), axis=3), axes=3)
    img_coils = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kspace_fully_sampled, axes=(1,2)), axes=(1,2)), axes=(1,2))
    image_original0 = np.sqrt(np.sum(np.square(np.abs(img_coils)),axis=0))


    for i in range(75,90):
        image_original = image_original0[:,:,i]
        mosaic(image_original, 1, 1, 1, [0,150], fig_title=f'image_original_{i}', fig_base_path=debug_path, fig_size=(10,10), num_rot=0)
    raise
    '''

    #num_acs = (24, 24, 256)
    num_acs = (22, 22, 256)
    #num_acs = (N1, 30, 40)
    Rx = 4
    Ry = 2

    acs_x, acs_y, acs_t = num_acs

    acs_start_index_x = N1 // 2 - num_acs[0] // 2  # inclusive
    acs_start_index_y = N2 // 2 - num_acs[1] // 2  # inclusive

    acs_end_index_x = np.int(np.ceil(N1 / 2)) + num_acs[0] // 2  # exclusive
    acs_end_index_y = np.int(np.ceil(N2 / 2)) + num_acs[1] // 2  # exclusive

    acs_start_index_t = Nt // 2 - num_acs[2] // 2  # inclusive
    acs_end_index_t = np.int(np.ceil(Nt / 2)) + num_acs[2] // 2  # exclusive

    #print (acs_start_index_x, acs_end_index_x)
    #print (acs_start_index_y, acs_end_index_y)
    #print (acs_start_index_t, acs_end_index_t)

    #kspace_undersampled_zero_filled = np.zeros(kspace_fully_sampled.shape, dtype=kspace_fully_sampled.dtype)
    #kspace_undersampled_zero_filled[:,0:N1:Ry,0:N2:Rx,:] = kspace_fully_sampled[:,0:N1:Ry,0:N2:Rx,:]
    #print (kspace_undersampled_zero_filled.shape)

    print(kspace_fully_sampled.shape)
    c, w, h, z = kspace_fully_sampled.shape
    mask_ellip = np.zeros((w, h), dtype=np.uint8)
    rr, cc = ellipse(w // 2, h // 2, w // 2, h // 2)
    mask_ellip[rr, cc] = 1
    print(mask_ellip.shape)
    mask_ellip = np.expand_dims(mask_ellip, axis=0)
    mask_ellip = np.repeat(mask_ellip, c, axis=0)
    mask_ellip = np.expand_dims(mask_ellip, axis=-1)
    mask_ellip = np.repeat(mask_ellip, z, axis=-1)
    print(mask_ellip.shape)

    mask = np.zeros(kspace_fully_sampled.shape)

    mask[0:32, 0:N1:7, 0:N2:7, :] = 1
    mask[0:32, 1:N1:7, 3:N2:7, :] = 1
    mask[0:32, 2:N1:7, 6:N2:7, :] = 1
    mask[0:32, 3:N1:7, 2:N2:7, :] = 1
    mask[0:32, 4:N1:7, 5:N2:7, :] = 1
    mask[0:32, 5:N1:7, 1:N2:7, :] = 1
    mask[0:32, 6:N1:7, 4:N2:7, :] = 1

    mask[32:64, 1:N1:7, 1:N2:7, :] = 1
    mask[32:64, 2:N1:7, 4:N2:7, :] = 1
    mask[32:64, 3:N1:7, 0:N2:7, :] = 1
    mask[32:64, 4:N1:7, 3:N2:7, :] = 1
    mask[32:64, 5:N1:7, 6:N2:7, :] = 1
    mask[32:64, 6:N1:7, 2:N2:7, :] = 1
    mask[32:64, 0:N1:7, 5:N2:7, :] = 1

    mask[64:96, 2:N1:7, 2:N2:7, :] = 1
    mask[64:96, 3:N1:7, 5:N2:7, :] = 1
    mask[64:96, 4:N1:7, 1:N2:7, :] = 1
    mask[64:96, 5:N1:7, 4:N2:7, :] = 1
    mask[64:96, 6:N1:7, 0:N2:7, :] = 1
    mask[64:96, 0:N1:7, 3:N2:7, :] = 1
    mask[64:96, 1:N1:7, 6:N2:7, :] = 1
    '''
    mask[:, 0:N1:7, 0:N2:7, :] = 1
    mask[:, 1:N1:7, 3:N2:7, :] = 1
    mask[:, 2:N1:7, 6:N2:7, :] = 1
    mask[:, 3:N1:7, 2:N2:7, :] = 1
    mask[:, 4:N1:7, 5:N2:7, :] = 1
    mask[:, 5:N1:7, 1:N2:7, :] = 1
    mask[:, 6:N1:7, 4:N2:7, :] = 1
    #print (mask[10,0:16,0:16,10])
    #raise
    '''
    '''
    mask[0:16, 0:N1:7, 0:N2:7, :] = 1
    mask[0:16, 1:N1:7, 3:N2:7, :] = 1
    mask[0:16, 2:N1:7, 6:N2:7, :] = 1
    mask[0:16, 3:N1:7, 2:N2:7, :] = 1
    mask[0:16, 4:N1:7, 5:N2:7, :] = 1
    mask[0:16, 5:N1:7, 1:N2:7, :] = 1
    mask[0:16, 6:N1:7, 4:N2:7, :] = 1

    mask[16:32, 1:N1:7, 1:N2:7, :] = 1
    mask[16:32, 2:N1:7, 4:N2:7, :] = 1
    mask[16:32, 3:N1:7, 0:N2:7, :] = 1
    mask[16:32, 4:N1:7, 3:N2:7, :] = 1
    mask[16:32, 5:N1:7, 6:N2:7, :] = 1
    mask[16:32, 6:N1:7, 2:N2:7, :] = 1
    mask[16:32, 0:N1:7, 5:N2:7, :] = 1


    mask[32:48, 2:N1:7, 2:N2:7, :] = 1
    mask[32:48, 3:N1:7, 5:N2:7, :] = 1
    mask[32:48, 4:N1:7, 1:N2:7, :] = 1
    mask[32:48, 5:N1:7, 4:N2:7, :] = 1
    mask[32:48, 6:N1:7, 0:N2:7, :] = 1
    mask[32:48, 0:N1:7, 3:N2:7, :] = 1
    mask[32:48, 1:N1:7, 6:N2:7, :] = 1
    '''
    #print (mask.shape)
    #raise

    kspace_undersampled_zero_filled0 = kspace_fully_sampled * mask * mask_ellip
    #kspace_undersampled_zero_filled = kspace_undersampled_zero_filled0[0:16,...] + kspace_undersampled_zero_filled0[16:32,...] + kspace_undersampled_zero_filled0[32:48,...]
    kspace_undersampled_zero_filled = kspace_undersampled_zero_filled0[
        0:32, ...] + kspace_undersampled_zero_filled0[32:64, ...]

    kspace_acs_zero_filled = np.zeros(kspace_fully_sampled.shape,
                                      dtype=kspace_fully_sampled.dtype)
    kspace_acs_zero_filled[:, acs_start_index_x:acs_end_index_x,
                           acs_start_index_y:acs_end_index_y,
                           acs_start_index_t:
                           acs_end_index_t] = kspace_fully_sampled[:,
                                                                   acs_start_index_x:
                                                                   acs_end_index_x,
                                                                   acs_start_index_y:
                                                                   acs_end_index_y,
                                                                   acs_start_index_t:
                                                                   acs_end_index_t]
    print(kspace_acs_zero_filled.shape)

    kspace_acs_cropped = np.zeros(
        [num_chan, num_acs[0], num_acs[1], num_acs[2]],
        dtype=kspace_fully_sampled.dtype)
    kspace_acs_cropped[:, :, :, :] = kspace_fully_sampled[:, acs_start_index_x:
                                                          acs_end_index_x,
                                                          acs_start_index_y:
                                                          acs_end_index_y,
                                                          acs_start_index_t:
                                                          acs_end_index_t]

    #tmp = kdata_ref[acs_start_index_x:acs_end_index_x,acs_start_index_y:acs_end_index_y, acs_start_index_t:acs_end_index_t]
    #print (tmp.shape)
    #print (acs_out.shape)
    #print (tmp[:,12,100])
    #print (acs_out[0,:,12,100])
    #raise

    #kspace_coils_acs_out = acs_out
    kspace_coils_acs_out = acs_out[:, 1:-1, 1:-1, :]
    #kspace_coils_acs_out = acs_out[:,acs_start_index_x:acs_end_index_x,acs_start_index_y:acs_end_index_y, acs_start_index_t:acs_end_index_t]
    #kspace_coils_acs_out = kspace_acs_cropped
    #kspace_coils_acs_out = np.expand_dims(kdata_ref[acs_start_index_x:acs_end_index_x,acs_start_index_y:acs_end_index_y, acs_start_index_t:acs_end_index_t], axis=0)
    '''
    tmp = np.expand_dims(kdata_ref[acs_start_index_x:acs_end_index_x,acs_start_index_y:acs_end_index_y, acs_start_index_t:acs_end_index_t], axis=0)
    print (kspace_coils_acs_out.shape)
    print (tmp.shape)
    print (kspace_coils_acs_out[0,10:12,10:12,5])
    print (tmp[0,10:12,10:12,5])
    raise
    '''

    #print (kspace_coils_acs_out.shape)
    #img_test = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kspace_coils_acs_out[0,:,:,0], axes=(0,1)), axes=(0,1)), axes=(0,1))
    #mosaic(img_test, 1, 1, 1, [0,2e-5], fig_title='img_test', fig_base_path='debug_test', fig_size=(15,15), num_rot=0)

    #kdata_ref[acs_start_index_x:acs_end_index_x,acs_start_index_y:acs_end_index_y, acs_start_index_t:acs_end_index_t] = acs_out[0,...] #put acs back to ref

    img_coils_ref = np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(kdata_ref,
                                                                  axes=(0, 1,
                                                                        2)),
                                                 axes=(0, 1, 2)),
                                    axes=(0, 1, 2))
    #img_coils_ref = np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(kdata_ref, axes=(0,1)), axes=(0,1)), axes=(0,1))

    image_original_ref = np.abs(img_coils_ref)
    #image_original_ref = np.sqrt(np.sum(np.square(np.abs(img_coils_ref)),axis=0))
    print('image_original_ref shape: ', image_original_ref.shape)

    start_t = time.time()

    name_image = f'{debug_path}/recon.mat'
    name_weight = f'{debug_path}/weight.mat'

    raki(num_chan,
         N1,
         N2,
         Nt,
         acs_start_index_x,
         acs_end_index_x,
         acs_start_index_y,
         acs_end_index_y,
         acs_start_index_t,
         acs_end_index_t,
         kspace_undersampled_zero_filled,
         kspace_acs_zero_filled,
         kspace_coils_acs_out,
         kspace_acs_cropped,
         Rx,
         Ry,
         debug_path,
         name_image,
         name_weight,
         train_flag=True)
    print(time.time() - start_t)
    #show_raki_results(image_original_ref, debug_path, name_image)
    show_raki_results_3d(image_original_ref, debug_path, name_image)