def driving_grid(self):

        final_grid = np.copy(self.occupancy_grid)

        final_grid[final_grid > 0.4] = 1
        final_grid[final_grid <= 0.4] = 0

        rr, cc = rectangle_perimeter((2, 2), (77, 77), shape=final_grid.shape)
        final_grid[rr, cc] = 1

        final_grid = pad_grid(final_grid, 1)

        rr, cc = rectangle((4, 4), (13, 13), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        rr, cc = rectangle((4, 65), (13, 74), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        reduced_grid = np.copy(final_grid)
        reduced_grid = block_padding(self.blocks, reduced_grid, size=5)

        final_grid = block_padding(self.blocks, final_grid)

        # rr, cc = ellipse(int(other_bot[0]) , int(other_bot[1]), 9,9, shape=final_grid.shape)
        # for i in range(len(rr)):
        #   final_grid[bound(rr[i]), bound(cc[i])] = 1

        return final_grid, reduced_grid
    def explore_uncertainty(self):
        flattened = np.copy(self.occupancy_grid)
        flattened = flattened.flatten()
        avg_uncertainty = np.average(flattened * np.log2(1 / flattened))

        uncertainty_grid = self.occupancy_grid * np.log2(
            1 / self.occupancy_grid)
        uncertainty_grid[uncertainty_grid > 0.3] = 1
        uncertainty_grid[uncertainty_grid <= 0.3] = 0

        # detect on uncertainty grid
        rr, cc = rectangle_perimeter((0, 0), (79, 79),
                                     shape=uncertainty_grid.shape)
        uncertainty_grid[rr, cc] = 0

        rr, cc = rectangle((0, 0), (13, 13), shape=uncertainty_grid.shape)
        uncertainty_grid[rr, cc] = 0

        rr, cc = rectangle((0, 65), (13, 79), shape=uncertainty_grid.shape)
        uncertainty_grid[rr, cc] = 0

        uncertainty_grid = gaussian(uncertainty_grid, sigma=0.8)

        coords = np.where(uncertainty_grid > 0.2)

        if len(coords) > 0:
            explore_coordinate = np.average(coords,
                                            weights=uncertainty_grid[coords],
                                            axis=1)
            return explore_coordinate
        else:
            return None
Example #3
0
def test_rectangle_extent_negative():
    # These two tests should be done together.
    expected = np.array([[0, 0, 0, 0, 0, 0],
                         [0, 0, 1, 1, 1, 1],
                         [0, 0, 1, 2, 2, 1],
                         [0, 0, 1, 1, 1, 1],
                         [0, 0, 0, 0, 0, 0]], dtype=np.uint8)

    start = (3, 5)
    extent = (-1, -2)
    img = np.zeros(expected.shape, dtype=np.uint8)
    rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1

    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 2
    assert_array_equal(img, expected)

    # Ensure that rr and cc have no overlap
    img = np.zeros(expected.shape, dtype=np.uint8)
    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 2

    rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)
def draw_bboxes_withindex(img, boxes, uids):
    """
    A helper function to draw bounding box rectangles on images
    Args:
        img: image to be drawn on in array format
        boxes: An (N,4) array of bounding boxes
    Output:
        Image with drawn bounding boxes
    """
    source = Image.fromarray(img)
    draw = ImageDraw.Draw(source)
    w2, h2 = (img.shape[0], img.shape[1])

    font = ImageFont.truetype(
        '/usr/share/fonts/truetype/freefont/FreeSerif.ttf', 40)
    #font = ImageFont.truetype('arial.ttf', 24)

    idx = 0

    for b in boxes:
        xmin, ymin, xmax, ymax = b

        for j in range(3):
            draw.rectangle(((xmin + j, ymin + j), (xmax + j, ymax + j)),
                           outline="red")
        draw.text((xmin + 20, ymin + 70), str(uids[idx]), font=font)
        idx += 1
    return source
Example #5
0
  def generate_patch_info(self, sizx, sizy, ori):
    max_s   = int(2*max(sizx, sizy))
    patch   = np.zeros((max_s, max_s))

    patch_0 = np.zeros((max_s, max_s))  # patch with zero offset

    v_siz_w =  1 +  sizx//4
    v_siz_h =  1 +  sizy//3
    v_off_w = (1 + (sizx - v_siz_w)//3)*2
    v_off_h = (1 + (sizy - v_siz_h)//6)*2 + v_siz_h//2

    start1     = (int((max_s - v_off_h - v_siz_h)//2), int((max_s - v_off_w - v_siz_w)//2))
    start2     = (int((max_s + v_off_h - v_siz_h)//2), int((max_s + v_off_w - v_siz_w)//2))
    start01    = (int((max_s - v_off_h - v_siz_h)//2), int((max_s - 0       - v_siz_w)//2))
    start02    = (int((max_s + v_off_h - v_siz_h)//2), int((max_s + 0       - v_siz_w)//2))
    extent     = (int(v_siz_h), int(v_siz_w))
    rr1,  cc1  = rectangle(start=start1,  extent=extent, shape=patch.shape)
    rr2,  cc2  = rectangle(start=start2,  extent=extent, shape=patch.shape)
    rr01, cc01 = rectangle(start=start01, extent=extent, shape=patch.shape)
    rr02, cc02 = rectangle(start=start02, extent=extent, shape=patch.shape)
    patch[  rr1,  cc1 ] = 255
    patch[  rr2,  cc2 ] = 255
    patch_0[rr01, cc01] = 255
    patch_0[rr02, cc02] = 255

    patch  = rotate(patch, ori).astype(int)
    patch_info = [patch, np.fliplr(patch), patch_0]

    return patch_info
Example #6
0
def test_rectangle_end():
    expected = np.array([[0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 0, 0, 0, 0]], dtype=np.uint8)
    start = (0, 1)
    end = (3, 3)
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(start, end=end, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    # Swap start and end
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(end=start, start=end, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    # Bottom left and top right
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(start=(3, 1), end=(0, 3), shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(end=(3, 1), start=(0, 3), shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)
Example #7
0
    def find_blocks(self):
        ''' finds blocks using the current occupancy grid
		args: 
			None
		returns:
			numpy array: final grid - final grid showing detections
			list: detected_blocks - list of detected blocks
		'''

        final_grid = gaussian(np.copy(self.occupancy_grid), sigma=0.2)

        final_grid[final_grid > 0.95] = 1
        final_grid[final_grid <= 0.95] = 0

        rr, cc = rectangle_perimeter((1, 1), (78, 78), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        rr, cc = rectangle((1, 1), (13, 13), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        rr, cc = rectangle((1, 65), (13, 78), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        final_grid = gaussian(final_grid, sigma=0.4)

        self.detected_blocks = blob_dog((final_grid),
                                        min_sigma=1.5,
                                        max_sigma=2.3,
                                        threshold=0.01,
                                        overlap=0.4)

        return final_grid, self.detected_blocks
    def find_blocks(self):

        final_grid = gaussian(np.copy(self.occupancy_grid), sigma=0.2)

        final_grid[final_grid > 0.95] = 1
        final_grid[final_grid <= 0.95] = 0

        rr, cc = rectangle_perimeter((1, 1), (78, 78), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        rr, cc = rectangle((1, 1), (13, 13), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        rr, cc = rectangle((1, 65), (13, 78), shape=final_grid.shape)
        final_grid[rr, cc] = 0

        final_grid = gaussian(final_grid, sigma=0.4)

        self.detected_blocks = blob_dog((final_grid),
                                        min_sigma=1.5,
                                        max_sigma=2.3,
                                        threshold=0.01,
                                        overlap=0.4)

        return final_grid, self.detected_blocks
Example #9
0
def generate_position_image(element, position_converter):
    img = Image.new("RGB", (100, 100), "white")

    if isinstance(element, E):
        Ep = element.value
        elements = Ep.strip(" ()").split("+")
    elif isinstance(element, str):
        if element == "all":
            elements = position_converter.keys()
        else:
            Ep = element
            elements = Ep.strip(" ()").split("+")
    else:
        return img

    draw = ImageDraw.Draw(img)

    for el in elements:
        x_start, y_start, x_end, y_end = position_converter[el]
        draw.rectangle(((x_start, y_start), (x_end, y_end)),
                       fill="gold",
                       outline=True,
                       width=1)
        draw.text((x_start, y_start), el, fill="black")

    draw.rectangle(((0, 0), (100 - 1, 100 - 1)), outline=True, width=1)
    return img
Example #10
0
def test_rectangle_extent_negative():
    # These two tests should be done together.
    expected = np.array([[0, 0, 0, 0, 0, 0],
                         [0, 0, 1, 1, 1, 1],
                         [0, 0, 1, 2, 2, 1],
                         [0, 0, 1, 1, 1, 1],
                         [0, 0, 0, 0, 0, 0]], dtype=np.uint8)

    start = (3, 5)
    extent = (-1, -2)
    img = np.zeros(expected.shape, dtype=np.uint8)
    rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1

    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 2
    assert_array_equal(img, expected)

    # Ensure that rr and cc have no overlap
    img = np.zeros(expected.shape, dtype=np.uint8)
    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 2

    rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)
Example #11
0
def test_rectangle_end():
    expected = np.array([[0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 0, 0, 0, 0]], dtype=np.uint8)
    start = (0, 1)
    end = (3, 3)
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(start, end=end, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    # Swap start and end
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(end=start, start=end, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    # Bottom left and top right
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(start=(3, 1), end=(0, 3), shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(end=(3, 1), start=(0, 3), shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)
def t_maze(t_shape, thick):
    assert t_shape[0] % 2 == 0, 'top bar size should be even number for symmetric shape. '
    x = np.ones([t_shape[1] + thick + 2, t_shape[0] + thick + 2], dtype=np.uint8)
    
    rr, cc = rectangle([1, 1], extent=[thick, t_shape[0] + thick])
    x[rr, cc] = 0
    
    rr, cc = rectangle([1 + thick, x.shape[1]//2 - thick//2], extent=[t_shape[1], thick])
    x[rr, cc] = 0
    
    return x
Example #13
0
    def _sample():
        x = np.random.randint(width, size=4).tolist()
        y = np.random.randint(height, size=4).tolist()
        x.sort()
        y.sort()

        # sample intersected bboxes
        fake = Faker()
        if fake.pybool():
            if fake.pybool():
                ax0, bx0, ax1, bx1 = x
            else:
                bx0, ax0, bx1, ax1 = x
            if fake.pybool():
                ay0, by0, ay1, by1 = y
            else:
                by0, ay0, by1, ay1 = y
        else:
            ax0, bx0, bx1, ax1 = x
            ay0, by0, by1, ay1 = y
        bboxes = [(ax0, ay0, ax1, ay1), (bx0, by0, bx1, by1)]

        # sample layers
        layers = [0, 3]
        shuffle(layers)
        im = Image.new("RGB", (width, width))
        draw = ImageDraw.Draw(im)
        im_t = [np.array(im)]
        for layer, bbox in zip(layers, bboxes):
            x0, y0, x1, y1 = bbox
            if layer == 4:
                draw.text((x0, y0), fake.sentence(), fill=fake.hex_color())
            elif layer == 3:
                f = os.path.join(photo_folder,
                                 files[fake.pyint(min=0, max=len(files) - 1)])
                _im = Image.open(f).resize((x1 - x0, y1 - y0))
                im.paste(_im, box=(x0, y0))
            elif layer == 0:
                draw.rectangle((x0, y0, x1, y1), fill=fake.hex_color())
            im_t.append(np.array(im))

        # sample final layer: text
        x0 = np.random.randint(width / 2)
        y0 = np.random.randint(height / 2)
        text = fake.sentence()
        draw.text((x0, y0), text, fill=fake.hex_color())
        w, h = draw.textsize(text)
        layers.append(4)
        bboxes.append((x0, y0, w, h))
        ims = np.stack(
            [np.concatenate([x, np.array(im)], axis=2) for x in im_t])

        return ims, np.array(layers), np.array(bboxes)
Example #14
0
def draw_haar_feature(w1, w2, w3, h, angle):
    img = np.zeros((h, w1 + w2 + w3), dtype=np.uint8)
    rr, cc = draw.rectangle((0, 0), extent=(h, w1), shape=img.shape)
    img[rr, cc] = BRIGHT_RECTANGLE
    rr, cc = draw.rectangle((0, w1), extent=(h, w2), shape=img.shape)
    img[rr, cc] = DARK_RECTANGLE
    if w3:
        rr, cc = draw.rectangle((0, w1 + w2), extent=(h, w3), shape=img.shape)
        img[rr, cc] = BRIGHT_RECTANGLE

    img = transform.rotate(img, 360 - angle, resize=True, preserve_range=False)

    return img
Example #15
0
def ginput2boundingbox(a, b, mode='mask'):
    """
    Takes the two corner points from the ginput of a rectangle
    and returns that rectangle in different forms
    :param a: (x_1,y_1)the first point
    :param b:(x_2,y_2) the second point
    :param mode: 'mask','verts',or 'patch' to define the output style
    :return: (rr,cc) if 'mask' or 'verts', (coord,h,w) if 'patch'
    """
    pts = np.array([[a[0], a[1]], [b[0], b[1]], [a[0], b[1]], [b[0], a[1]]],
                   dtype='int')
    bot_x = np.min(pts[:, 0])
    bot_y = np.min(pts[:, 1])
    top_x = np.max(pts[:, 0])
    top_y = np.max(pts[:, 1])

    if mode == 'mask':
        rr, cc = draw.rectangle((bot_x, bot_y), end=(top_x, top_y))
    elif mode == 'verts':
        rr = np.array([bot_x, bot_x, top_x, top_x])
        cc = np.array([bot_y, top_y, top_y, bot_y])
    elif mode == 'patch':
        coord = (bot_x, bot_y)
        w = top_x - bot_x
        h = top_y - bot_y
        return (coord, h, w)
    else:
        raise ValueError(
            "Unknown mode of output requested. Must be 'mask' or 'verts'")

    return (cc, rr)
Example #16
0
def expand_bbox(box, expansion=0.5):
    """
    accepts a solid rectangle ROI and expands it
    :param box: A bounding box in "mask" form.
    :param expansion: the percentage to expand each dimension by [0,1]. Default: 0.5
    :return:
    """
    if len(box) == 4:
        x_bds = np.array([box[1], box[3]])
        y_bds = np.array([box[0], box[2]])
    else:
        x_bds = np.array([np.min(box[1]), np.max(box[1])])
        y_bds = np.array([np.min(box[0]), np.max(box[0])])

    w = np.abs(np.diff(x_bds))
    h = np.abs(np.diff(y_bds))
    if type(expansion) is list:
        pad_w = expansion[0]
        pad_h = expansion[1]
    else:
        pad_w = int(w * expansion / 2)
        pad_h = int(h * expansion / 2)

    x_bds += [-pad_w, pad_w]
    y_bds += [-pad_h, pad_h]
    # check boundary of im
    x_bds[x_bds < 0] = 0
    y_bds[y_bds < 0] = 0

    return (draw.rectangle((y_bds[0], x_bds[0]), (y_bds[1], x_bds[1])))
Example #17
0
 def _highlight(self, image):
     """ Test to make sure we're augmenting in the right place """
     print("Area shape: {}".format(
         (self.area_shape[0], self.area_shape[1])))
     rr, cc = draw.rectangle(
         (0, 0), end=(self.area_shape[0] - 1, self.area_shape[1] - 1))
     image[rr, cc, :] = (0.5, 0.5, 0.5)
Example #18
0
def bbox_to_map(x1, y1, x2, y2):
    bbmap = np.zeros((224, 224, 1), np.float32)
    start = (int(y1 * 224), int(x1 * 224))
    end = (int(y2 * 224), int(x2 * 224))
    rr, cc = draw.rectangle(start, end=end, shape=(224, 224))
    bbmap[rr, cc] = 1
    return bbmap
Example #19
0
    def QS(self, width, height, period, sep, n):
        """WRITE GRATINGS INTO ARRAY
        --- n is the number of gratings either side of the central stop
        --- sep is the width of the central stop"""

        self.width = width
        self.height = height

        self.period = np.around(period / (self.resolution), decimals=0)
        self.sep = np.around(sep / (self.resolution * 2), decimals=0)

        self.n = n

        rx = np.around(self.width / (self.resolution), decimals=0)
        ry = np.around(self.height / (self.resolution), decimals=0)

        for i in range(self.n):

            # NEGATIVE GRATINGS
            start = (self.C - ry,
                     self.C - self.sep - (i + 1) * (self.period + rx) - rx)
            end = (self.C + ry,
                   self.C - self.sep - (i + 1) * (self.period + rx) - rx)

            r, c = draw.rectangle(start=start, end=end, shape=self.array.shape)

            self.array[r.astype(dtype=np.int16), c.astype(dtype=np.int16)] = 1

        self.array += np.rot90(np.rot90(self.array))
        self.array += np.rot90(self.array)

        plt.set_cmap("bone")
        plt.imshow(self.array)

        return self.array
Example #20
0
def get_bbox_mask(data, N=513):
    """
    input: 
        img: np.array, image
        data: dict, json correspondant à l'image
    """

    try:
        gt = data['annotations']  # on extrait les données de détections
        N = gt[0]['height']
    except:
        gt = []

    mask = np.zeros((N, N))

    for tank_data in gt:
        bbox = tank_data['bbox']
        rx, ry = rectangle(start=(bbox[1], bbox[0]),
                           extent=(bbox[2], bbox[3]),
                           shape=(N, N))
        mask[np.int64(rx), np.int64(ry)] = 1

    nb_tanks = len(list(gt))

    return mask, nb_tanks
Example #21
0
    def _build_bbox_mask(self, image_id):
        # Create rectangular bounding box since we are doing object detection, not segmentation
        # desired dimension is [height, width, instance_count]
        img = self.image_info[image_id]
        
        mask = np.zeros([img["height"], img["width"], len(img["annotations"])],
                        dtype=np.uint8)
        
        for i,(_,p) in enumerate(img["annotations"].iterrows()):
            # Create rectangular bounding box since we are doing object detection, not segmentation
    
            xmax = int(img["width"]*p['XMax'])
            xmin = int(img["width"]*p['XMin'])
            ymin = int(img["height"]*p['YMin'])
            ymax = int(img["height"]*p['YMax'])
            
            start = (ymin, xmin)  #top left corner ... are coordinates reversed?
            end = (ymax, xmax)  #height and width
            rr, cc = rectangle(start, end=end, shape=(img["height"],img["width"]))
            
            mask[rr, cc, i] = 1

        
        # Return mask, and array of class IDs of each instance.
        return mask.astype(np.bool), np.array(img['annotations']['LabelID'].values, dtype=np.int32)
Example #22
0
def test_rect_3d_end():
    expected = np.array([[[0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0]],
                         [[0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0]],
                         [[0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0]],
                         [[0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 1, 1, 0],
                          [0, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0]]], dtype=np.uint8)
    img = np.zeros((4, 5, 5), dtype=np.uint8)
    start = (1, 0, 2)
    end = (3, 2, 3)
    pp, rr, cc = rectangle(start, end=end, shape=img.shape)
    img[pp, rr, cc] = 1
    assert_array_equal(img, expected)
Example #23
0
    def asarray(self, dtype=None, val=1, shape=None):
        """Return the Roi as a binary array.

        Arguments:
            dtype -- the desired dtype of the returned array (default: np.bool_)
            val -- the value of pixels indicating the Roi (default: 1)
            shape -- the desired shape of the returned array (default: largest coordinates + 1)
        """
        import skimage.draw as skd
        if self.coords is None:
            return None
        if dtype is None:
            dtype = np.bool_
        if shape is None:
            shape = (bbox['bottom'] + 1, bbox['right'] + 1)
        bbox = self.bbox
        arr = np.zeros(shape, dtype=dtype)
        if self._type == TYPE_RECT:
            rr, cc = skd.rectangle(start=(bbox['top'], bbox['left']), end=(bbox['bottom'], bbox['right']), shape=shape)
        elif self._type in (TYPE_POLYGON, TYPE_FREEHAND):
            rr, cc = skd.polygon(self.rows, self.cols, shape=shape)
        else:
            raise NotImplementedError(f"Array conversion for ROI type '{self._type}' is not implemented.")
        arr[rr, cc] = val
        return arr
Example #24
0
def draw_rectangle(centre, w, h , contrast, N):
    rect=np.zeros((N,N),dtype=np.int8)
    start = tuple(np.subtract(centre,(w/2,h/2)).astype(int))
    extent = tuple(np.add(centre,(w/2,h/2)).astype(int))
    x,y = draw.rectangle(start, extent, shape=rect.shape)
    rect[x,y] = contrast
    return rect
Example #25
0
def draw_square(centre, l, contrast, N):
    square=np.zeros((N,N), dtype=np.int8)
    start = tuple(np.subtract(centre,(l/2,l/2)).astype(int))
    extent = tuple(np.add(centre,(l/2,l/2)).astype(int))
    x,y = draw.rectangle(start, extent, shape=square.shape)
    square[x,y]=contrast
    return square
Example #26
0
    def get_input_tensor(last_layer_np, image, x, y):
        cand1_as_input = np.full((1000, 1000), 0)
        begin_big_x = x - 50
        end_big_x = x + 50
        begin_big_y = y - 50
        end_big_y = y + 50

        begin_small_x = x - 5
        end_small_x = x + 5
        begin_small_y = y - 5
        end_small_y = y + 5

        rr, cc = draw.rectangle((begin_small_x, begin_small_y),
                                extent=(11, 11))
        cand1_as_input[rr, cc] = 1
        cand1_as_input = cand1_as_input[np.ix_(
            np.arange(begin_big_x, end_big_x),
            np.arange(begin_big_y, end_big_y))]

        last_layer_np_cut = last_layer_np[np.ix_(
            np.arange(0, last_layer_np.shape[0]),
            np.arange(begin_big_x, end_big_x),
            np.arange(begin_big_y, end_big_y))]
        image_cut = image[np.ix_(np.arange(begin_big_x, end_big_x),
                                 np.arange(begin_big_y, end_big_y))]
        last_layer_tensor = torch.from_numpy(
            last_layer_np_cut.astype(np.float32))
        imagetensor = torch.from_numpy(image_cut.astype(
            np.float32)).unsqueeze(0)
        cand1_as_input_tensor = torch.from_numpy(
            cand1_as_input.astype(np.float32)).unsqueeze(0)
        input_tensor2 = torch.cat(
            (imagetensor, last_layer_tensor, cand1_as_input_tensor), 0)

        return input_tensor2
Example #27
0
    def rectangle_mutation(self, img, msk, bbox):
        start = (bbox.y_min, bbox.x_min)
        end = (bbox.y_max, bbox.x_max)
        rr, cc = draw.rectangle(start, end=end, shape=msk.shape)

        if self.thin_iterations == 0:
            if self.binary_dilation_disk_size > 0:
                # do not dilate what we already have on the image
                tmp_msk = np.zeros_like(msk)
                tmp_msk[rr, cc] = 1
                tmp_msk = self.binary_dilation_disk(
                    tmp_msk, self.binary_dilation_disk_size)
                msk = msk + tmp_msk
            elif self.find_boundaries == True:
                tmp_msk = np.zeros_like(msk)
                tmp_msk[rr, cc] = 1
                border_msk = find_boundaries(tmp_msk,
                                             mode='inner',
                                             background=0)

                # selem = square(3)
                # border_msk = binary_dilation(border_msk,selem)

                msk = msk + tmp_msk + border_msk.astype('uint8')
            else:
                msk[rr, cc] += 1
            return msk
        else:
            tmp_msk = np.zeros_like(msk)
            tmp_msk[rr, cc] = 1
            tmp_msk = self.thin_region_fast(tmp_msk, self.thin_iterations)
            msk += tmp_msk
            return msk
Example #28
0
    def render(self, mode='human'):
        """
    Class that renders the position of the walker on the plane
    :param mode:
    :return:
    """
        if mode == 'human':
            return None
        else:
            array = np.zeros(self.resolution + [3])
            for goal in self.goals:
                pixel_coord = (goal * self.center) + self.center
                # print("Goal: {} - Coord: {}".format(goal, pixel_coord))
                rr, cc = draw.rectangle(pixel_coord[0],
                                        pixel_coord[1],
                                        shape=array.shape)
                array[rr.astype(int), cc.astype(int)] = np.array([1, 0, 0])

            pixel_coord = (self.pose * self.center) + self.center
            rr, cc = draw.circle(pixel_coord[0],
                                 pixel_coord[1],
                                 radius=2,
                                 shape=array.shape)
            array[rr, cc] = np.array([0, 0, 1])  # Paint circle in red
            return array
Example #29
0
def set_pixels(image, bounding_boxes):
    image_with_boxes = np.copy(image)
    for box in bounding_boxes:
        Xmin, Xmax, Ymin, Ymax = box
        rr, cc = rectangle(start=(Ymin, Xmin), end=(
            Ymax, Xmax), shape=image.shape)
        image_with_boxes[rr, cc] = 1  # set color white
    return image_with_boxes
Example #30
0
    def cover_rectangle(self, start, end):
        '''
        Function removes a specified rectangle region of the data.
        Use to remove the bleeding effects.
        '''

        rr, cc = rectangle(start, extent=end)
        self.astro_flux[rr, cc] = 1
Example #31
0
def square(top, left, width, image_width=301, amplitude=1):

    square = np.zeros((image_width, image_width))
    xx, yy = rectangle((top, left), (top + width - 1, left + width - 1),
                       shape=(image_width, image_width))

    square[xx.astype(int), yy.astype(int)] = amplitude
    return square
Example #32
0
def test_rectangle_extent():
    expected = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]],
                        dtype=np.uint8)
    start = (1, 1)
    extent = (3, 3)
    img = np.zeros((5, 5), dtype=np.uint8)
    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)

    img = np.zeros((5, 5, 3), dtype=np.uint8)
    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc, 0] = 1
    expected_2 = np.zeros_like(img)
    expected_2[..., 0] = expected
    assert_array_equal(img, expected_2)
Example #33
0
def draw_object(color=(128, 128, 128),
                rot_angle=0,
                flip=False,
                pos=(8, 8),
                image_size=(32, 32),
                size=(16, 16),
                chop_size=(12, 4)):
    img = np.zeros(image_size + (3, ), dtype=np.uint8)
    rr, cc = rectangle(start=pos, extent=size, shape=image_size)
    img[rr, cc] = color
    rr, cc = rectangle(start=pos, extent=chop_size, shape=image_size)
    img[rr, cc] = 0

    if flip:
        img = img[::-1]

    return rotate(img, rot_angle).copy()
Example #34
0
def test_rectangle_extent():
    expected = np.array([[0, 0, 0, 0, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 1, 1, 1, 0],
                         [0, 0, 0, 0, 0]], dtype=np.uint8)
    img = np.zeros((5, 5), dtype=np.uint8)
    start = (1, 1)
    extent = (3, 3)
    rr, cc = rectangle(start, extent=extent, shape=img.shape)
    img[rr, cc] = 1
    assert_array_equal(img, expected)