def test_threshold_adaptive_gaussian(self):
        ref = np.array(
            [[False, False, False, False,  True],
             [False, False,  True, False,  True],
             [False, False,  True,  True, False],
             [False,  True,  True, False, False],
             [ True,  True, False, False, False]]
        )
        out = threshold_adaptive(self.image, 3, method='gaussian')
        assert_equal(ref, out)

        out = threshold_adaptive(self.image, 3, method='gaussian', param=1.0 / 3.0)
        assert_equal(ref, out)
    def test_threshold_adaptive_gaussian(self):
        ref = np.array([[False, False, False, False, True],
                        [False, False, True, False, True],
                        [False, False, True, True, False],
                        [False, True, True, False, False],
                        [True, True, False, False, False]])
        out = threshold_adaptive(self.image, 3, method='gaussian')
        assert_equal(ref, out)

        out = threshold_adaptive(self.image,
                                 3,
                                 method='gaussian',
                                 param=1. / 3.)
        assert_equal(ref, out)
Example #3
0
 def test_threshold_adaptive_median(self):
     ref = np.array([[False, False, False, False, True],
                     [False, False, True, False, False],
                     [False, False, True, False, False],
                     [False, False, True, True, False],
                     [False, True, False, False, False]])
     out = threshold_adaptive(self.image, 3, method='median')
     assert_equal(ref, out)
Example #4
0
 def test_threshold_adaptive_median(self):
     ref = np.array(
         [[False, False, False, False,  True],
          [False, False,  True, False, False],
          [False, False,  True, False, False],
          [False, False,  True,  True, False],
          [False,  True, False, False, False]]
     )
     out = threshold_adaptive(self.image, 3, method='median')
     assert_equal(ref, out)
 def test_threshold_local_equals_adaptive(self):
     def func(arr):
         return arr.sum() / arr.shape[0]
     with expected_warnings(['deprecated', 'return value']):
         thresholded_original = threshold_adaptive(self.image, 3,
                                                   method='generic',
                                                   param=func)
     threshold_new = threshold_local(self.image, 3, method='generic',
                                     param=func)
     assert_equal(thresholded_original, self.image > threshold_new)
Example #6
0
 def test_threshold_local_equals_adaptive(self):
     def func(arr):
         return arr.sum() / arr.shape[0]
     with expected_warnings(['deprecated', 'return value']):
         thresholded_original = threshold_adaptive(self.image, 3,
                                                   method='generic',
                                                   param=func)
     threshold_new = threshold_local(self.image, 3, method='generic',
                                     param=func)
     assert_equal(thresholded_original, self.image > threshold_new)
Example #7
0
    def test_threshold_adaptive_generic(self):
        def func(arr):
            return arr.sum() / arr.shape[0]

        ref = np.array([[False, False, False, False, True],
                        [False, False, True, False, True],
                        [False, False, True, True, False],
                        [False, True, True, False, False],
                        [True, True, False, False, False]])
        out = threshold_adaptive(self.image, 3, method='generic', param=func)
        assert_equal(ref, out)
Example #8
0
 def test_threshold_adaptive_generic(self):
     def func(arr):
         return arr.sum() / arr.shape[0]
     ref = np.array(
         [[False, False, False, False,  True],
          [False, False,  True, False,  True],
          [False, False,  True,  True, False],
          [False,  True,  True, False, False],
          [ True,  True, False, False, False]]
     )
     out = threshold_adaptive(self.image, 3, method='generic', param=func)
     assert_equal(ref, out)
 def test_threshold_adaptive_generic(self):
     def func(arr):
         return arr.sum() / arr.shape[0]
     ref = np.array(
         [[False, False, False, False,  True],
          [False, False,  True, False,  True],
          [False, False,  True,  True, False],
          [False,  True,  True, False, False],
          [ True,  True, False, False, False]]
     )
     with expected_warnings(['deprecated', 'return value']):
         out = threshold_adaptive(self.image, 3, method='generic',
                                  param=func)
     assert_equal(ref, out)
Example #10
0
 def test_threshold_adaptive_generic(self):
     def func(arr):
         return arr.sum() / arr.shape[0]
     ref = np.array(
         [[False, False, False, False,  True],
          [False, False,  True, False,  True],
          [False, False,  True,  True, False],
          [False,  True,  True, False, False],
          [ True,  True, False, False, False]]
     )
     with expected_warnings(['deprecated', 'return value']):
         out = threshold_adaptive(self.image, 3, method='generic',
                                  param=func)
     assert_equal(ref, out)
Example #11
0
from skimage.filters.thresholding import threshold_adaptive
from skimage.morphology import square, erosion
from skimage.exposure import rescale_intensity
from skimage.measure import label, regionprops
from scipy.ndimage import binary_fill_holes
import numpy as np

from barcode import draw_regions

if __name__ == '__main__':
    img = imread('./../../images/bloodcells.jpg')

    p1, p2 = np.percentile(img, (0, 90))
    img = rescale_intensity(img, in_range=(p1, p2))
    img_gray = rgb2gray(img)
    img_gray_filtered = 1. - threshold_adaptive(
        img_gray, block_size=31, offset=0.02)
    img_gray_filtered = erosion(img_gray_filtered, selem=square(3))
    filled = binary_fill_holes(img_gray_filtered)
    labels = label(filled)
    regions = regionprops(labels)
    cells = []
    for region in regions:
        bbox = region.bbox
        height = bbox[2] - bbox[0]
        width = bbox[3] - bbox[1]
        if 20 < height and 10 < width:
            cells.append(region)
    print "Number if cells:", len(cells)
    cells_result = draw_regions(cells, img_gray.shape)
    plt.imshow(cells_result, 'gray')
    plt.show()
Example #12
0
from matplotlib import pyplot as plt
from skimage.color import rgb2gray
from skimage.filters.thresholding import threshold_adaptive
from skimage.morphology import opening, square
from skimage.measure import label, regionprops

def draw_regions(regs, img_size):
    img = np.ndarray((img_size[0], img_size[1]), dtype='float64')
    for reg in regs:
        coords = reg.coords
        for coord in coords:
            img[coord[0]][coord[1]] = 1.
    return img

if __name__ == '__main__':
    barcode_img = imread('./../../images/barcode.jpg')
    barcode_gray = rgb2gray(barcode_img)
    barcode_filtered = 1. - threshold_adaptive(barcode_gray, block_size=75, offset=0.04)
    barcode_filtered = opening(barcode_filtered, selem=square(3))
    labels = label(barcode_filtered)
    regions = regionprops(labels)
    num_regions = []
    for region in regions:
        bbox = region.bbox
        height = bbox[2] - bbox[0]
        width = bbox[3] - bbox[1]
        if 25 < height < 45 and 1 <= float(height) / width <= 6 and (region.extent < 0.57 or region.extent > 0.80):
            num_regions.append(region)
    barcode_result = draw_regions(num_regions, barcode_gray.shape)
    plt.imshow(barcode_result, 'gray')
    plt.show()