Example #1
0
def test(fold=None, fold_idx="0", dir_name=None):

    with torch.no_grad():
        custom_load(
            model,
            os.path.join(opt.checkpoint, "fold_" + fold_idx, "model_best.pth"),
            device)
        custom_load(vm, opt.VM_checkpoint, device)
        model.eval()

        test_set = Dataset_4D_multitime(opt.data_dir,
                                        sequence_list=fold,
                                        nb_inputs=opt.nb_inputs,
                                        horizon=opt.horizon,
                                        test=True)
        test_loader = DataLoader(test_set,
                                 batch_size=1,
                                 shuffle=False,
                                 num_workers=4)

        vol_dir = os.path.join(opt.logging_dir, "test", dir_name,
                               "fold_" + fold_idx, "volumes")
        cond_mkdir(vol_dir)

        MSE_loss, NCC_loss, SSIM_loss = [], [], []
        mse = nn.MSELoss(reduction='mean').to(device)

        for idx, [ref_volume, input_volume_list,
                  current_volume_list] in enumerate(Bar(test_loader)):

            ref_volume = ref_volume.unsqueeze(1).to(device)
            vmorph_volume, dvf = [], []
            for vol in range(len(current_volume_list)):
                current_volume_list[vol] = current_volume_list[vol].unsqueeze(
                    1).to(device)
                dvf_vm = vm(ref_volume, current_volume_list[vol])
                dvf.append(dvf_vm)
                vmorph_volume.append(stn(ref_volume, dvf_vm))

            if opt.condi_type == "1":
                c1 = list()
                c1_ref = ref_volume[:, :, opt.sag_index, :, :]
                for q in range(opt.nb_inputs):
                    c1temp = input_volume_list[q].unsqueeze(
                        1)[:, :, opt.sag_index, :, :]
                    c1.append(
                        torch.cat([c1temp.to(device),
                                   c1_ref.to(device)],
                                  dim=1))
                c1 = torch.stack(c1, dim=2).to(device)  # sagittal
                c2 = None  # coronal
            else:
                c2 = list()
                c2_ref = ref_volume[:, :, :, opt.cor_index, :]
                for q in range(opt.nb_inputs):
                    c2temp = input_volume_list[q].unsqueeze(
                        1)[:, :, :, opt.cor_index, :]
                    c2.append(
                        torch.cat([c2temp.to(device),
                                   c2_ref.to(device)],
                                  dim=1))
                c1 = None  # sagittal
                c2 = torch.stack(c2, dim=2).to(device)  # coronal

            # Inference
            latent = var_or_cuda(torch.as_tensor(np.random.randn(
                opt.latent_size),
                                                 dtype=torch.float),
                                 device=device)
            latent = var_or_cuda(latent, device=device).unsqueeze(dim=0)
            generated_dvf, generated_current_volume = model(
                ref_volume, None, c1, c2, dvf=None, prior_post_latent=latent)

            avg_ncc, avg_mse, avg_ssim = 0, 0, 0
            for tp in range(opt.horizon):
                save_tensor_as_nifti(vmorph_volume[tp][0, 0, :, :, :],
                                     "vm_volume_t" + str(tp),
                                     vol_dir,
                                     iter=idx,
                                     aff=[[3.5, 0, 0, 0], [0, 1.70 * 2, 0, 0],
                                          [0, 0, 1.70 * 2, 0], [0, 0, 0, 1]])

                save_tensor_as_nifti(generated_current_volume[tp][0,
                                                                  0, :, :, :],
                                     "generated_volume_t" + str(tp),
                                     vol_dir,
                                     iter=idx,
                                     aff=[[3.5, 0, 0, 0], [0, 1.70 * 2, 0, 0],
                                          [0, 0, 1.70 * 2, 0], [0, 0, 0, 1]])

                avg_ncc += ncc_loss(generated_current_volume[tp],
                                    vmorph_volume[tp],
                                    device=device).item()
                avg_mse += mse(generated_current_volume[tp],
                               vmorph_volume[tp]).item()
                avg_ssim += ss(
                    generated_current_volume[tp][
                        0, 0, :, :, :].detach().cpu().numpy(),
                    vmorph_volume[tp][0, 0, :, :, :].detach().cpu().numpy())

            NCC_loss.append(avg_ncc / opt.horizon)
            MSE_loss.append(avg_mse / opt.horizon)
            SSIM_loss.append(avg_ssim / opt.horizon)

        NCC_loss = np.asarray(NCC_loss)
        MSE_loss = np.asarray(MSE_loss)
        SSIM_loss = np.asarray(SSIM_loss)
        dir_name = os.path.join(dir_name, "fold_" + fold_idx)
        np.save(
            os.path.join(opt.logging_dir, "test", dir_name, "NCC_loss.npy"),
            NCC_loss)
        np.save(
            os.path.join(opt.logging_dir, "test", dir_name, "MSE_loss.npy"),
            MSE_loss)
        np.save(
            os.path.join(opt.logging_dir, "test", dir_name, "SSIM_loss.npy"),
            SSIM_loss)

        print("\nTest set average loss NCC: %0.4f, MSE: %0.4f, SSIM: %0.4f" %
              (np.mean(NCC_loss), np.mean(MSE_loss), np.mean(SSIM_loss)))
Example #2
0
 def score(self, phenotype):
     """Calculates SS Fitness for a specie"""
     fit = ss(phenotype, self.target)
     return fit
Example #3
0
def SSIM_my(img1, img2):
    """
    Structural Similarity
    """
    return ss(img1, img2, multichannel=True)
 def get_ss_fitness(self, specie):
     """Calculates SS Fitness for a specie"""
     fit = ss(specie.phenotype, self.target)
     return fit
Example #5
0
 def getSsFitness(self, specie):
     fit = ss(specie.phenotype, self.target)
     return fit