Example #1
0
def test_denoise_bilateral_multidimensional():
    img = np.ones((10, 10, 10, 10))
    with pytest.raises(ValueError):
        restoration.denoise_bilateral(img, multichannel=False)
    with pytest.raises(ValueError):
        restoration.denoise_bilateral(
            img, multichannel=True)
Example #2
0
def denoising(astro):
	noisy = astro + 0.6 * astro.std() * np.random.random(astro.shape)
	noisy = np.clip(noisy, 0, 1)
	fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5), sharex=True,
						   sharey=True, subplot_kw={'adjustable': 'box-forced'})

	plt.gray()

	ax[0, 0].imshow(noisy)
	ax[0, 0].axis('off')
	ax[0, 0].set_title('noisy')
	ax[0, 1].imshow(denoise_tv_chambolle(noisy, weight=0.1, multichannel=True))
	ax[0, 1].axis('off')
	ax[0, 1].set_title('TV')
	ax[0, 2].imshow(denoise_bilateral(noisy, sigma_range=0.05, sigma_spatial=15))
	ax[0, 2].axis('off')
	ax[0, 2].set_title('Bilateral')

	ax[1, 0].imshow(denoise_tv_chambolle(noisy, weight=0.2, multichannel=True))
	ax[1, 0].axis('off')
	ax[1, 0].set_title('(more) TV')
	ax[1, 1].imshow(denoise_bilateral(noisy, sigma_range=0.1, sigma_spatial=15))
	ax[1, 1].axis('off')
	ax[1, 1].set_title('(more) Bilateral')
	ax[1, 2].imshow(astro)
	ax[1, 2].axis('off')
	ax[1, 2].set_title('original')

	fig.tight_layout()

	plt.show()
Example #3
0
def getSubImages(img, pixels, size):
    subImages = []
    originals = []
    for i in range(len(img)):
        subImageRow = []
        originalRow = []
        for j in range(len(img[i])):
            if i % pixels == 0 and j % pixels == 0 and i+size-1 < len(img) and j+size-1 < len(img[i]):
                subImage = []
                for k in range(i, i+size, int(size/20)):
                    line = []
                    for l in range(j, j+size, int(size/20)):
                        line.append(img[k][l])
                    subImage.append(line)
                originalRow.append(subImage)
                if preprocess == preprocessing.SOBEL:
                    subImage = denoise_bilateral(subImage, sigma_range=0.1, sigma_spatial=15)
                    subImage = sobel(subImage)
                elif preprocess == preprocessing.HOG:
                    subImage = useHoG(subImage)
                else:
                    subImage = denoise_bilateral(subImage, sigma_range=0.1, sigma_spatial=15)
                    subImage = sobel(subImage)
                    subImage = useHoG(subImage)
                subImageRow.append(subImage)
        if len(subImageRow) > 0:
            subImages.append(subImageRow)
            originals.append(originalRow)
    return subImages, originals
Example #4
0
def test_denoise_bilateral_3d():
    img = lena
    # add some random noise
    img += 0.5 * img.std() * np.random.random(img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_bilateral(img, sigma_range=0.1, sigma_spatial=20)
    out2 = restoration.denoise_bilateral(img, sigma_range=0.2, sigma_spatial=30)

    # make sure noise is reduced
    assert img.std() > out1.std()
    assert out1.std() > out2.std()
Example #5
0
def test_denoise_sigma_range_and_sigma_color():
    img = checkerboard_gray.copy()[:50,:50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)
    out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
                                         sigma_spatial=10, multichannel=False)
    with expected_warnings('`sigma_range` has been deprecated in favor of `sigma_color`. '
                           'The `sigma_range` keyword argument will be removed in v0.14'):
        out2 = restoration.denoise_bilateral(img, sigma_color=0.2, sigma_range=0.1,
                                             sigma_spatial=10, multichannel=False)
    assert_equal(out1, out2)
Example #6
0
def test_denoise_bilateral_color():
    img = checkerboard.copy()
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_bilateral(img, sigma_range=0.1, sigma_spatial=20)
    out2 = restoration.denoise_bilateral(img, sigma_range=0.2, sigma_spatial=30)

    # make sure noise is reduced in the checkerboard cells
    assert img[30:45, 5:15].std() > out1[30:45, 5:15].std()
    assert out1[30:45, 5:15].std() > out2[30:45, 5:15].std()
def test_denoise_bilateral_color():
    img = checkerboard.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
                                         sigma_spatial=10, multichannel=True)
    out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
                                         sigma_spatial=20, multichannel=True)

    # make sure noise is reduced in the checkerboard cells
    assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
    assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
Example #8
0
def denoise_image(data, type=None):
    from skimage.restoration import denoise_tv_chambolle, denoise_bilateral

    if type == "tv":
        return denoise_tv_chambolle(data, weight=0.2, multichannel=True)

    return denoise_bilateral(data, sigma_range=0.1, sigma_spatial=15)
def crop_resize_other(img, pixelspacing ):
   print("image shape {}".format(np.array(img).shape))

   xmeanspacing = float(1.25826490244)
   ymeanspacing = float(1.25826490244)

   xscale = float(pixelspacing) / xmeanspacing
   yscale = float(pixelspacing) / ymeanspacing
   xnewdim = round( xscale * np.array(img).shape[0])
   ynewdim = round( yscale * np.array(img).shape[1])
   img = transform.resize(img, (xnewdim, ynewdim))
  
   #img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX) 
   #img = auto_canny(img)
   img = denoise_bilateral(img, sigma_range=0.05, sigma_spatial=15)

   #im = cv2.normalize(im, None, 0, 255, cv2.NORM_MINMAX) 
   #img = img.Canny(im,128,128)
   """crop center and resize"""
   if img.shape[0] < img.shape[1]:
       img = img.T
   # we crop image from center
   short_egde = min(img.shape[:2])
   yy = int((img.shape[0] - short_egde) / 2)
   xx = int((img.shape[1] - short_egde) / 2)
   crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
   crop_img *= 255
   return crop_img.astype("uint8")
def blur_predict(model, X, type="median", filter_size=3, sigma=1.0):
  
    if type == "median":
        blured_X = np.array(list(map(lambda x: ndimage.median_filter(x, filter_size), 
                                     X)))
    elif type == "gaussian":
        blured_X = np.array(list(map(lambda x: ndimage.gaussian_filter(x, filter_size),
                                     X)))
    elif type == "f_gaussian":
        blured_X = np.array(list(map(lambda x: filters.gaussian_filter(x.reshape((28, 28)), sigma=sigma).reshape(784),
                                     X))) 
    elif type == "tv_chambolle":
        blured_X = np.array(list(map(lambda x: restoration.denoise_tv_chambolle(x.reshape((28, 28)), weight=0.2).reshape(784),
                                     X)))
    elif type == "tv_bregman":
        blured_X = np.array(list(map(lambda x: restoration.denoise_tv_bregman(x.reshape((28, 28)), weight=5.0).reshape(784),
                                     X)))
    elif type == "bilateral":
        blured_X = np.array(list(map(lambda x: restoration.denoise_bilateral(np.abs(x).reshape((28, 28))).reshape(784),
                                     X)))
    elif type == "nl_means":
        blured_X = np.array(list(map(lambda x: restoration.nl_means_denoising(x.reshape((28, 28))).reshape(784),
                                     X)))
        
    elif type == "none":
        blured_X = X 

    else:
        raise ValueError("unsupported filter type", type)

    return predict(model, blured_X)
Example #11
0
def test_denoise_bilateral_nan():
    img = np.full((50, 50), np.NaN)
    # This is in fact an optional warning for our test suite.
    # Python 3.5 will not trigger a warning.
    with expected_warnings([r'invalid|\A\Z']):
        out = restoration.denoise_bilateral(img, multichannel=False)
    assert_equal(img, out)
 def denoise_image(self):
     """
 Abstracted version of denoise_bilateral function. Runs function on raw image using given constants
 """
     return restoration.denoise_bilateral(
         self.im,
         sigma_color=self.C['BILATERAL_SIGMA_COLOR'],
         sigma_spatial=self.C['BILATERAL_SIGMA_SPATIAL'],
         multichannel=False)
Example #13
0
def test_denoise_sigma_range_and_sigma_color():
    img = checkerboard_gray.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)
    out1 = restoration.denoise_bilateral(img,
                                         sigma_color=0.1,
                                         sigma_spatial=10,
                                         multichannel=False)
    with expected_warnings(
            '`sigma_range` has been deprecated in favor of `sigma_color`. '
            'The `sigma_range` keyword argument will be removed in v0.14'):
        out2 = restoration.denoise_bilateral(img,
                                             sigma_color=0.2,
                                             sigma_range=0.1,
                                             sigma_spatial=10,
                                             multichannel=False)
    assert_equal(out1, out2)
Example #14
0
def test_denoise_bilateral_3d_multichannel():
    img = np.ones((50, 50, 50))
    with expected_warnings(["grayscale"]):
        result = restoration.denoise_bilateral(img)

    expected = np.empty_like(img)
    expected.fill(np.nan)

    assert_equal(result, expected)
Example #15
0
def test_denoise_bilateral_3d_multichannel():
    img = np.ones((50, 50, 50))
    with expected_warnings(["grayscale"]):
        result = restoration.denoise_bilateral(img)

    expected = np.empty_like(img)
    expected.fill(np.nan)

    assert_equal(result, expected)
Example #16
0
def test_denoise_bilateral_nan():
    import sys
    img = np.full((50, 50), np.NaN)

    # TODO: This warning is not optional in python3. This should be
    # made a strict warning when we get to 0.15
    with expected_warnings(['invalid|\A\Z']):
        out = restoration.denoise_bilateral(img, multichannel=False)
    assert_equal(img, out)
Example #17
0
def test_denoise_bilateral_multichannel_deprecation():
    img = checkerboard.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    with expected_warnings(["`multichannel` is a deprecated argument"]):
        out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
                                             sigma_spatial=10,
                                             multichannel=True)
    with expected_warnings(["`multichannel` is a deprecated argument"]):
        out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
                                             sigma_spatial=20,
                                             multichannel=True)

    # make sure noise is reduced in the checkerboard cells
    assert img[30:45, 5:15].std() > out1[30:45, 5:15].std()
    assert out1[30:45, 5:15].std() > out2[30:45, 5:15].std()
Example #18
0
def test_denoise_bilateral_color():
    img = checkerboard.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    out1 = restoration.denoise_bilateral(img,
                                         sigma_color=0.1,
                                         sigma_spatial=10,
                                         multichannel=True)
    out2 = restoration.denoise_bilateral(img,
                                         sigma_color=0.2,
                                         sigma_spatial=20,
                                         multichannel=True)

    # make sure noise is reduced in the checkerboard cells
    assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
    assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
def test_denoise_bilateral_types(dtype):
    img = checkerboard_gray.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    # check that we can process multiple float types
    out = restoration.denoise_bilateral(img, sigma_color=0.1,
                                        sigma_spatial=10, multichannel=False)
Example #20
0
def thresh_norm_filt(image,thresh=0,norm=1):
    from skimage.restoration import denoise_bilateral
    '''Thresholds image to >0 to get rid of dark current,
    applies a simple denoise filter, and threshes and renormalizes again
    Returns the normalized image
    '''
    normed=thresh_norm(image,thresh=thresh,norm=norm, copy=True)
    filt=denoise_bilateral(normed,multichannel=False)
    norm=thresh_norm(filt,norm=norm,copy=False)
    return norm
Example #21
0
def test_denoise_bilateral_pad():
    """This test checks if the bilateral filter is returning an image
    correctly padded."""
    img = img_as_float(data.chelsea())[100:200, 100:200]
    img_bil = restoration.denoise_bilateral(img,
                                            sigma_color=0.1,
                                            sigma_spatial=10,
                                            multichannel=True)
    condition_padding = np.count_nonzero(np.isclose(img_bil, 0, atol=0.001))
    assert_equal(condition_padding, 0)
def loop(imgFiles):
    for f in imgFiles:
        img = img_as_float(data.load(os.path.join(noisyDir, f)))
        startTime = time.time()
        img = denoise_bilateral(img,
                                sigma_color=0.1,
                                sigma_spatial=3,
                                multichannel=True)
        skimage.io.imsave(os.path.join(denoisedDir, f), img)
        print("Took %f seconds for %s" % (time.time() - startTime, f))
Example #23
0
def bilateral(imagePath, outputPath):
    warnings.filterwarnings("ignore")
    imagePath = "" + imagePath
    color = io.imread(imagePath)
    img = rgb2gray(color)
    image = img_as_ubyte(img)
    cleaned = denoise_bilateral(image, mode='edge')
    cleaned_uint8 = img_as_ubyte(cleaned)
    imsave('' + outputPath, cleaned_uint8)
    cleaned_uint8
Example #24
0
def image_features_hog3(img, num_features,orientation,maxcell,maxPixel):

     image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
     thresh = threshold_otsu(image)
     binary = image > thresh
     im = resize(binary, (maxPixel, maxPixel))
     ##hog scikit transform
     

     return image_features_hog_fd(im)
    def preprocess_image(self, imagefilename):
        rgb_image = img_as_ubyte(io.imread(imagefilename))
        rgb_image = restoration.denoise_bilateral(rgb_image, multichannel=True)
        if rgb_image.shape[2] == 3:
            alpha_channel = np.ones(rgb_image.shape[:-1])
            rgba_image = np.dstack((rgb_image, alpha_channel))
        else:
            rgba_image = rgb_image

        io.imsave(filenames.preprocessed_file(imagefilename), rgba_image)
Example #26
0
def image_features_hog3(img, num_features,orientation,maxcell,maxPixel):

     image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
     thresh = threshold_otsu(image)
     binary = image > thresh
     im = resize(binary, (maxPixel, maxPixel))
     ##hog scikit transform
     fd= hog(im, orientations=orientation, pixels_per_cell=(maxcell, maxcell),
                    cells_per_block=(1, 1), visualise=False,normalise=True)

     return fd
def Bilateral_proj(S, image_size, lambda_this):
    """
    This function does the Non local mean projection
    """
    S1 = np.reshape(S[0, :], image_size)
    S2 = np.reshape(S[1, :], image_size)

    sm1 = S1.min() + 0.5
    sm2 = S2.min() + 0.5

    S1 = S1 + sm1
    S2 = S2 + sm2
    # Nonlocal mean denoising
    S1 = denoise_bilateral(S1, sigma_spatial=lambda_this, multichannel=False)
    S2 = denoise_bilateral(S2, sigma_spatial=lambda_this, multichannel=False)

    S[0, :] = np.reshape(S1, (1, image_size[0] * image_size[1])) - sm1
    S[1, :] = np.reshape(S2, (1, image_size[0] * image_size[1])) - sm2

    return S
Example #28
0
def test_denoise_bilateral_types(dtype):
    img = checkerboard_gray.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1).astype(dtype)

    # check that we can process multiple float types
    out = restoration.denoise_bilateral(img,
                                        sigma_color=0.1,
                                        sigma_spatial=10,
                                        multichannel=False)
Example #29
0
def test_denoise_bilateral_color(channel_axis):
    img = checkerboard.copy()[:50, :50]
    # add some random noise
    img += 0.5 * img.std() * np.random.rand(*img.shape)
    img = np.clip(img, 0, 1)

    img = np.moveaxis(img, -1, channel_axis)
    out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
                                         sigma_spatial=10,
                                         channel_axis=channel_axis)
    out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
                                         sigma_spatial=20,
                                         channel_axis=channel_axis)
    img = np.moveaxis(img, channel_axis, -1)
    out1 = np.moveaxis(out1, channel_axis, -1)
    out2 = np.moveaxis(out2, channel_axis, -1)

    # make sure noise is reduced in the checkerboard cells
    assert img[30:45, 5:15].std() > out1[30:45, 5:15].std()
    assert out1[30:45, 5:15].std() > out2[30:45, 5:15].std()
Example #30
0
def BF_proc(newimg, backimg, FilterSts, FilterOrder, FilterSelect, back_sbs):

    if back_sbs == 2 and FilterSts == 2:
        if FilterSelect == 'Median':
            ImageFinal = ndimage.median_filter(np.subtract(newimg, backimg),
                                               FilterOrder)
        elif FilterSelect == 'Gaussian':
            ImageFinal = ndimage.gaussian_filter(np.subtract(newimg, backimg),
                                                 FilterOrder)
        elif FilterSelect == 'Uniform':
            ImageFinal = ndimage.uniform_filter(np.subtract(newimg, backimg),
                                                FilterOrder)
        elif FilterSelect == 'Denoise TV':
            ImageFinal = denoise_tv_chambolle(np.subtract(newimg, backimg),
                                              weight=FilterOrder,
                                              multichannel=True)
        elif FilterSelect == 'Bilateral':
            ImageFinal = denoise_bilateral(np.subtract(newimg, backimg),
                                           sigma_range=FilterOrder,
                                           sigma_spatial=15)
    elif back_sbs == 2 and FilterSts == 0:
        ImageFinal = np.subtract(newimg, backimg)
    elif back_sbs == 0 and FilterSts == 2:
        if FilterSelect == 'Median':
            ImageFinal = ndimage.median_filter(newimg, FilterOrder)
        elif FilterSelect == 'Gaussian':
            ImageFinal = ndimage.gaussian_filter(newimg, FilterOrder)
        elif FilterSelect == 'Uniform':
            ImageFinal = ndimage.uniform_filter(newimg, FilterOrder)
        elif FilterSelect == 'Denoise TV':
            ImageFinal = denoise_tv_chambolle(newimg,
                                              weight=FilterOrder,
                                              multichannel=True)
        elif FilterSelect == 'Bilateral':
            ImageFinal = denoise_bilateral(newimg,
                                           sigma_range=FilterOrder,
                                           sigma_spatial=15)
    elif back_sbs == 0 and FilterSts == 0:
        ImageFinal = newimg

    return ImageFinal
def denoiseBilateral(imagen,multichannel):
    """
    -Reemplaza el valor de cada pixel en funcion de la proximidad espacial y radiometrica
     medida por la funcion Gaussiana de la distancia euclidiana entre dos pixels y con
     cierta desviacion estandar.
    -False si la imagen es una escala de grises, sino True
    """
    noisy = img_as_float(imagen)

    denoise = denoise_bilateral(noisy, 7, 9, 0.08,multichannel)

    return denoise
Example #32
0
 def _filter_depth(self, depth):
     temp = self._fill_in_nans(depth)
     if temp.max() > 1.0:
         factor = temp.max()
         temp /= factor
     else:
         factor = 1.0
     temp_denoised = \
         denoise_bilateral(temp, sigma_range=30, sigma_spatial=4.5)
     temp_denoised[np.isnan(depth)] = np.nan
     temp_denoised *= factor
     return temp_denoised
Example #33
0
def findmembranes(arr_raw):
    '''Morphological operations to find cell membranes from dystrophin channel, or similar'''
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    kernelsm = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))

    # Need to check here that the values in arr lie between 0 and 255!
    arr = np.array(arr_raw, dtype=np.uint8)

    recipe = [
        (cv2.dilate, kernelsm),
        (cv2.dilate, kernelsm),
        (cv2.dilate, kernelsm),
        #(cv2.dilate,kernel),
        #(cv2.dilate,kernel),
        #(cv2.erode,kernel),
        (cv2.erode, kernelsm),
        (cv2.erode, kernelsm),
        (cv2.erode, kernelsm)
    ]

    #arrf = ndimage.gaussian_filter(arr,0.3)
    #arrf = cv2.GaussianBlur(arr, ksize=(3,3),sigmaX=0,sigmaY=0)
    #arrf = cv2.medianBlur(arr,3)

    #arrf = cv2.bilateralFilter(arr,d=9,sigmaColor=1555,sigmaSpace=1555)
    #ret,thresh = cv2.threshold(arrf.astype(np.uint8),1,255,cv2.THRESH_BINARY)

    arrf = restoration.denoise_bilateral(arr,
                                         11,
                                         sigma_color=3,
                                         sigma_spatial=3,
                                         multichannel=False)
    Image.fromarray(makepseudo(arrf)).show()

    #glob_thresh = filters.threshold_otsu(arrf)
    #thresh = np.array(255*(arrf > glob_thresh/2.0),dtype=np.uint8)
    locthresh = filters.threshold_local(arrf, block_size=21, offset=0)
    thresh = arrf > (locthresh)
    Image.fromarray(makepseudo(255 * thresh)).show()
    threshclean = morphology.remove_small_objects(thresh, 600)
    Image.fromarray(makepseudo(255 * threshclean)).show()
    #thresh = morphology.skeletonize(thresh)
    #Image.fromarray(makepseudo(255*thresh)).show()
    #thresh = morphology.binary_dilation(thresh)
    #Image.fromarray(makepseudo(255*thresh)).show()

    thresh = np.array(255 * thresh, dtype=np.uint8)
    comb0 = threshorig(arr, thresh)
    for func, kern in recipe:
        thresh = func(thresh, kern)
        Image.fromarray(makepseudo(thresh)).show()
    ithresh = cv2.bitwise_not(thresh)
    return ((ithresh, comb0, threshorig(arr, thresh)))
Example #34
0
 def imageDenoise(self, denoise_method='TV'):
     if denoise_method == 'TV':
         return denoise_tv_chambolle(self.altered_image)
     elif denoise_method == 'bilateral':
         return denoise_bilateral(self.altered_image,
                                  sigma_color=0.05,
                                  sigma_spatial=15,
                                  multichannel=True)
     elif denoise_method == 'wavelet':
         return denoise_wavelet(self.altered_image, multichannel=True)
     else:
         print denoise_method, ' is not a valid denoising method choice.'
def bilateral_filter(noisy_images: np.ndarray,
                     noise_std_dev: float,
                     show_progress: bool = False) -> np.ndarray:
    """
    Params:
    noisy_images: receive noisy_images with shape (IMG, M, N, C), 
    where IMG is the quantity of noisy images 
    with dimensions MxN and
    C represents the color dimensions, i.e. if the images are colored,
    C = 3 (RGB), otherwise if C = 1, is grayscale. 

    noise_std_dev: the standart deviation from noise.
    """

    validate_array_input(noisy_images)
    validate_if_noise_std_dev_is_a_float(noise_std_dev)

    filtered_images = []

    if show_progress:
        for i in tqdm(range(noisy_images.shape[0])):
            filtered_images.append(
                denoise_bilateral(noisy_images[i, :, :, 0],
                                  win_size=(3, 3),
                                  sigma_color=noise_std_dev,
                                  sigma_spatial=noise_std_dev,
                                  multichannel=False))
    else:
        for i in range(noisy_images.shape[0]):
            filtered_images.append(
                denoise_bilateral(noisy_images[i, :, :, 0],
                                  win_size=(3, 3),
                                  sigma_color=noise_std_dev,
                                  sigma_spatial=noise_std_dev,
                                  multichannel=False))

    filtered_images = np.array(filtered_images)

    return filtered_images
Example #36
0
def depthFilter(disp):
    # Filter the depth
    noisy = disp
    result = denoise_bilateral(noisy,
                               sigma_color=0.5,
                               sigma_spatial=4,
                               win_size=7,
                               multichannel=False)
    b = np.percentile(noisy, list(range(100)))
    a = np.percentile(result, list(range(100)))
    x = estimate_coef(a, b)
    result = (result * x[1] + x[0])
    return result
Example #37
0
    def nlm(self):
        # print('Entrou no non local means')
        # estimate the noise standard deviation from the noisy image
        sigma_est = np.mean(estimate_sigma(self.environment, multichannel=False))
        # print(f"Estimated noise standard deviation = {sigma_est}")

        # slow algorithm
        # denoise = denoise_nl_means(self.environment, h=1.15 * sigma_est, fast_mode=False)
    
        denoise = denoise_bilateral(self.environment, win_size=3, sigma_spatial=sigma_est,
                multichannel=False)
        denoise = np.reshape(denoise, self.environment.shape)
        return scale(denoise)
def bilateral_2d_filter(image):
    """ TODO
    """
    return restoration.denoise_bilateral(
        image,
        win_size=None,
        sigma_color=None,
        sigma_spatial=1,
        bins=10000,
        mode="constant",
        cval=0,
        multichannel=False,
    )
Example #39
0
def image_features_resize_thres(img, maxPixel, num_features,imageSize):
     # X is the feature vector with one row of features per image
     #  consisting of the pixel values a, num_featuresnd our metric

     X=np.zeros(num_features, dtype=float)
     image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
     thresh = threshold_otsu(image)
     binary = image > thresh
     im = resize(binary, (maxPixel, maxPixel))

     # Store the rescaled image pixels
     X[0:imageSize] = np.reshape(im,(1, imageSize))

     return X
Example #40
0
def register_image_pair(idx, path_img_target, path_img_source, path_out):
    """ register two images together

    :param int idx: empty parameter for using the function in parallel
    :param str path_img_target: path to the target image
    :param str path_img_source: path to the source image
    :param str path_out: path for exporting the output
    :return (str, float):
    """
    start = time.time()
    # load and denoise reference image
    img_target = io.imread(path_img_target)
    img_target = denoise_wavelet(img_target,
                                 wavelet_levels=7,
                                 multichannel=True)
    img_target_gray = rgb2gray(img_target)

    # load and denoise moving image
    img_source = io.imread(path_img_source)
    img_source = denoise_bilateral(img_source,
                                   sigma_color=0.05,
                                   sigma_spatial=2,
                                   multichannel=True)
    img_source_gray = rgb2gray(img_source)

    # detect ORB features on both images
    detector_target = ORB(n_keypoints=150)
    detector_source = ORB(n_keypoints=150)
    detector_target.detect_and_extract(img_target_gray)
    detector_source.detect_and_extract(img_source_gray)
    matches = match_descriptors(detector_target.descriptors,
                                detector_source.descriptors)

    # robustly estimate affine transform model with RANSAC
    model, _ = ransac((detector_target.keypoints[matches[:, 0]],
                       detector_source.keypoints[matches[:, 1]]),
                      AffineTransform,
                      min_samples=25,
                      max_trials=500,
                      residual_threshold=0.95)

    # warping source image with estimated transformations
    img_warped = warp(img_target,
                      model.inverse,
                      output_shape=img_target.shape[:2])
    path_img_warped = os.path.join(path_out, NAME_IMAGE_WARPED % idx)
    io.imsave(path_img_warped, img_warped)
    # summarise experiment
    execution_time = time.time() - start
    return path_img_warped, execution_time
Example #41
0
    def _filter(photo, parameter):
        # scale is 1/8 of the maximum image size
        scale = max(photo.shape[:2]) / (8 * max(photo.shape[:2]))
        # parameters have to do with pixel diameter for filter,
        # and color space smoothing
        new_pic = denoise_bilateral(photo,
                                    int(32 * scale),
                                    50,
                                    10 * scale,
                                    multichannel=True)

        edited = photo + (photo - new_pic) * parameter
        edited = np.clip(edited, 0, 1)
        return edited
Example #42
0
def deoniseBilateral():
    astro = img_as_float(data.astronaut())
    astro = astro[220:300, 220:320]
    imgO = astro.copy()
    noisy = astro + 0.6 * astro.std() * np.random.random(astro.shape)
    noisy = np.clip(noisy, 0, 1)
    imgN = noisy.copy()
    denoised = denoise_bilateral(noisy,
                                 sigma_color=0.05,
                                 sigma_spatial=15,
                                 multichannel=True)
    imgR = denoised.copy()

    return [imgO, imgN, imgR]
Example #43
0
def autoenhancing():
    global panelA,panelB
    path = tkFileDialog.askopenfilename()
    print("AUTO ENHANCE")
    astro = cv2.imread(path)
    astro = cv2.cvtColor(astro, cv2.COLOR_BGR2GRAY)
    img=astro

    p2, p98 = np.percentile(img, (2, 98))
    img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98))

    img=img_rescale

    adapteq = exposure.equalize_adapthist(img, clip_limit=0.03)
		
    img=adapteq
    denoised = denoise_bilateral(img, sigma_color=0.1,sigma_spatial=15, multichannel=False)
    img=denoised
    for i in range(len(img)):
        for j in range(len(img[0])):
            img[i][j]=255*img[i][j]
            
	# convert the images to PIL format...    
    pic1 = Image.fromarray(astro)
    pic = Image.fromarray(img)
	# ...and then to ImageTk format
    image = ImageTk.PhotoImage(pic1)
    edged = ImageTk.PhotoImage(pic)
		


		
    if panelA is None or panelB is None:
		# the first panel will store our original image
        panelA = Label(image=image)
        panelA.image = image
        panelA.pack(side="left", padx=10, pady=10)
 
		# while the second panel will store the edge map
        panelB = Label(image=edged)
        panelB.image = edged
        panelB.pack(side="right", padx=10, pady=10)
 
		# otherwise, update the image panels
    else:
		# update the pannels
        panelA.configure(image=image)
        panelB.configure(image=edged)
        panelA.image = image
        panelB.image = edged
Example #44
0
def nldenoise(X):
    """
    Pre-process images that are fed to neural network.

    :param X: X
    """
    print('Denoising images...')
    progbar = Progbar(X.shape[0])  # progress bar for pre-processing status tracking

    for i in range(X.shape[0]):
        X[i] = denoise_bilateral(X[i], sigma_range=0.05, sigma_spatial=4)
        progbar.add(1)

    return X
Example #45
0
def image_features_resize_thres(img, maxPixel, num_features,imageSize):
     # X is the feature vector with one row of features per image
     #  consisting of the pixel values a, num_featuresnd our metric

     X=np.zeros(num_features, dtype=float)
     image=denoise_bilateral(img, win_size=5, sigma_range=None, sigma_spatial=1, bins=10000, mode='constant', cval=0)
     thresh = threshold_otsu(image)
     binary = image > thresh
     im = resize(binary, (maxPixel, maxPixel))

     # Store the rescaled image pixels
     X[0:imageSize] = np.reshape(im,(1, imageSize))

     return X
Example #46
0
def apply_bilateral_filtering(img, d=15, sigmacolor=75, sigmacoordinate=75):
    # Retain original data type
    orig_dtype = img.pixel_array.dtype

    # Convert from [0; max] to [0; 1] as it is required by denoise_nl_means
    upper_bound = np.max(img.pixel_array)
    img_as_float = img.pixel_array / upper_bound

    new_img = denoise_bilateral(img_as_float, win_size=d, sigma_color=sigmacolor, sigma_spatial=sigmacoordinate)

    # Convert back to [0; max]
    new_img *= upper_bound

    return new_img.astype(orig_dtype)
Example #47
0
def watershed(image):
    """ the watershed algorithm """
    if len(image.shape) != 2:
        raise TypeError("The input image must be gray-scale ")

    h, w = image.shape
    image = cv2.equalizeHist(image)
    image = denoise_bilateral(image, sigma_range=0.1, sigma_spatial=10)
    image = rescale_intensity(image)
    image = img_as_ubyte(image)
    image = rescale_intensity(image)
    # com.debug_im(image)

    _, thres = cv2.threshold(image, 80, 255, cv2.THRESH_BINARY_INV)

    distance = ndi.distance_transform_edt(thres)
    local_maxi = peak_local_max(distance, indices=False,
                                labels=thres,
                                min_distance=5)

    # com.debug_im(thres)
    # implt = plt.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
    # plt.show()

    markers = ndi.label(local_maxi, np.ones((3, 3)))[0]
    labels = ws(-distance, markers, mask=thres)
    labels = np.uint8(labels)
    # result = np.round(255.0 / np.amax(labels) * labels).astype(np.uint8)
    # com.debug_im(result)

    segments = []
    for idx in range(1, np.amax(labels) + 1):

        indices = np.where(labels == idx)
        left = np.amin(indices[1])
        right = np.amax(indices[1])
        top = np.amin(indices[0])
        down = np.amax(indices[0])

        # region = labels[top:down, left:right]
        # m = (region > 0) & (region != idx)
        # region[m] = 0
        # region[region >= 1] = 1
        region = image[top:down, left:right]
        cont = Contour(mask=region)
        cont.lt = [left, top]
        cont.rb = [right, down]
        segments.append(cont)

    return segments
Example #48
0
def get_regions(img):
    denoised=restoration.denoise_bilateral(img.astype('uint16'), 
#                                            sigma_range=0.01, 
                                           sigma_spatial=15,
                                          multichannel=False)
    smoothened = filters.median(denoised,np.ones((4,4)))
    markers = np.zeros(smoothened.shape, dtype=np.uint)
# otsu works only for only for multi-channel images     
#     markers[smoothened < filters.threshold_otsu(smoothened)] = 1
#     markers[smoothened > filters.threshold_otsu(smoothened)] = 2
    markers[smoothened < filters.median(smoothened)] = 1
    markers[smoothened > filters.median(smoothened)] = 2

    labels = random_walker(smoothened, markers, beta=10, mode='bf')
    regions= measure.label(labels)
    return regions, denoised, smoothened,markers
Example #49
0
def localToneMap(img,dR=4,filt="bilateral",sigma=6, sr=0.05, ss=15):

	r = img[:,:,0]
	g = img[:,:,1]
	b = img[:,:,2]

	pixList = [r,g,b]
	(width,height,_) = img.shape

	# Intensity -- consider using weighted average?? 
	I = np.mean(pixList, axis=0)

	# Chrominance Channels
	chromeChannels = map(lambda x:x/I,  pixList) 

	# Log Intensity
	L = np.log2(I)

	# bilateral filter
	if filt == "gaussian":
		B = ndimage.filters.gaussian_filter(L,sigma)
	else:
		B = denoise_bilateral(L,sigma_range=sr, sigma_spatial=ss)

	# Compute the detail layer: 
	D = L - B 

	offset = np.amax(B) 

	scale = dR / (offset - np.amin(B))

	B_Prime = (B - offset*np.ones((width,height))) * scale

	# Reconstruct the log intensity: O = 2^(B' + D)
	reconLogIntens = map(lambda x: 2**x, B_Prime + D)

	# New Colors R',G',B' = O * (R/I, G/I, B/I)
	newColors = map(lambda x: x * reconLogIntens, chromeChannels)

	# Gamma Compression/correction
	newColors = map(gammaCorrect, newColors)

	img[:,:,0] = newColors[0]
	img[:,:,1] = newColors[1]
	img[:,:,2] = newColors[2]

	return img
Example #50
0
 def _get_processed_image(self):
     # read image
     image = mpimg.imread(self.image_path)
     mask = image[:,:,1] > 150.
     image[mask] = 255.
     #plt.imshow(image)
     #plt.show()
     # convert to grayscale
     image = self.rgb2gray(image)
     # crop image
     image = image[100:1000,200:1100]
     mask = mask[100:1000,200:1100]
     image = image - np.min(image)
     image[mask] *= 255. / np.max(image[mask])
     if self.filter == True:
         image = denoise_bilateral(image, sigma_spatial=self.denoise_spatial)
     if self.denoise == True:
         image = threshold_adaptive(image, self.block_size, offset=self.offset)
     return image, mask
def crop_resize(img, pixelspacing, center, size):
   print("image shape {}".format(np.array(img).shape))

   xmeanspacing = float(1.25826490244)
   ymeanspacing = float(1.25826490244)

   xscale = float(pixelspacing) / xmeanspacing
   yscale = float(pixelspacing) / ymeanspacing
   xnewdim = round( xscale * np.array(img).shape[0])
   ynewdim = round( yscale * np.array(img).shape[1])
   img = transform.resize(img, (xnewdim, ynewdim))
   img = np.uint8(img * 255)
   #img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX) 
   #img = auto_canny(img)
   img = denoise_bilateral(img, sigma_range=0.05, sigma_spatial=15)

   #im = cv2.normalize(im, None, 0, 255, cv2.NORM_MINMAX) 
   #img = img.Canny(im,128,128)
   """crop center and resize"""
   if img.shape[0] < img.shape[1]:
       img = img.T
   # we crop image from center
   short_egde = min(img.shape[:2])
   #yy = int((img.shape[0] - short_egde) / 2)
   #xx = int((img.shape[1] - short_egde) / 2)
   #crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
   # resize to 64, 64
   resized_img = None
   yy = int(center[1] - 64)
   xx = int(center[0] - 64)
   if yy > 0 and xx > 0 and (yy+128) < img.shape[0] and xx + 128 < img.shape[1]:
       resized_img = img[yy : yy + 128, xx : xx + 128]
   else:
       yy = int((img.shape[0] - short_egde) / 2)
       xx = int((img.shape[1] - short_egde) / 2)
       resized_img = img[yy : yy + 128, xx : xx + 128]

   resized_img *= 255
   return resized_img.astype("uint8")
 def _smooth_image(self):
     from skimage import restoration
     self._image = restoration.denoise_bilateral(self.image)
Example #53
0
def smoothen(img):
    denoised=restoration.denoise_bilateral(img.astype('uint16'), sigma_range=0.01, sigma_spatial=15)
    smoothened = filters.median(denoised,np.ones((4,4)))
    return smoothened
Example #54
0
noisy = np.clip(noisy, 0, 1)

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5))
fig.suptitle('George O. Barros - Noisy redution (scikit-image)')

plt.gray()

ax[0, 0].imshow(noisy)
ax[0, 0].axis('off')
ax[0, 0].set_title('noisy')

ax[0, 1].imshow(denoise_tv_chambolle(noisy, weight=0.1, multichannel=True))
ax[0, 1].axis('off')
ax[0, 1].set_title('TV')

ax[0, 2].imshow(denoise_bilateral(noisy, sigma_range=0.05, sigma_spatial=15))
ax[0, 2].axis('off')
ax[0, 2].set_title('Bilateral')

ax[1, 0].imshow(denoise_tv_chambolle(noisy, weight=0.2, multichannel=True))
ax[1, 0].axis('off')
ax[1, 0].set_title('(more) TV')

ax[1, 1].imshow(denoise_bilateral(noisy, sigma_range=0.1, sigma_spatial=15))
ax[1, 1].axis('off')
ax[1, 1].set_title('(more) Bilateral')

ax[1, 2].imshow(lena)
ax[1, 2].axis('off')
ax[1, 2].set_title('original')
Example #55
0
def save_roc_curve(actual_pixel_labels, predicted_pixel_labels):
	y_actual = actual_pixel_labels.flatten()
	y_predicted = predicted_pixel_labels.flatten()
	auc = roc_auc_score(y_actual, y_predicted)
	fpr, tpr, thresholds = roc_curve(y_actual, y_predicted)
	plt.figure(figsize=(12, 7))
	plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % auc)
	plt.plot([0, 1], [0, 1], 'k--')
	plt.xlim([0.0, 1.0])
	plt.ylim([0.0, 1.0])
	plt.xlabel('False Positive Rate', fontsize="xx-large")
	plt.ylabel('True Positive Rate', fontsize="xx-large")
	plt.title('Receiver Operating Characteristic', fontsize="xx-large")
	plt.legend(loc="lower right")
	plt.savefig("results/roc_curve.png")
	plt.show()
	return True

BILATERAL_FILTERING = False
folder = sys.argv[1]
actual_pixel_labels, predicted_pixel_labels = np.load("results/" + folder + "/y.npy"), np.load("results/" + folder + "/output.npy") 
if BILATERAL_FILTERING:
	predicted_pixel_labels = np.array([denoise_bilateral(im) for im in predicted_pixel_labels])
save_random_images(actual_pixel_labels, predicted_pixel_labels, 3)
output_stats(actual_pixel_labels, predicted_pixel_labels)
#save_roc_curve(actual_pixel_labels, predicted_pixel_labels)



Example #56
0
def test_denoise_bilateral_nan():
    img = np.NaN + np.empty((50, 50))
    out = restoration.denoise_bilateral(img, multichannel=False)
    assert_equal(img, out)
Example #57
0
def test_denoise_bilateral_zeros():
    img = np.zeros((10, 10))
    assert_equal(img, restoration.denoise_bilateral(img, multichannel=False))
Example #58
0
def test_denoise_bilateral_3d_multichannel():
    img = np.ones((50, 50, 50))
    with expected_warnings(["grayscale"]):
        result = restoration.denoise_bilateral(img, multichannel=True)

    assert_equal(result, img)
Example #59
0
def test_denoise_bilateral_3d_grayscale():
    img = np.ones((50, 50, 3))
    with testing.raises(ValueError):
        restoration.denoise_bilateral(img, multichannel=False)
Example #60
0
def test_denoise_bilateral_constant():
    img = np.ones((10, 10)) * 5
    assert_equal(img, restoration.denoise_bilateral(img, multichannel=False))