Example #1
0
def test_slow_warp_nonint_oshape():
    image = np.random.rand(5, 5)

    with pytest.raises(ValueError):
        warp(image, lambda xy: xy, output_shape=(13.1, 19.5))

    warp(image, lambda xy: xy, output_shape=(13.0001, 19.9999))
Example #2
0
def test_warp_tform():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1
    theta = -np.pi / 2
    tform = SimilarityTransform(scale=1, rotation=theta, translation=(0, 4))

    x90 = warp(x, tform, order=1)
    assert_array_almost_equal(x90, np.rot90(x))

    x90 = warp(x, tform.inverse, order=1)
    assert_array_almost_equal(x90, np.rot90(x))
Example #3
0
def test_bool_nonzero_order_errors(order):
    img = np.zeros((10, 10), dtype=bool)

    with pytest.raises(ValueError):
        rescale(img, 0.5, order=order)

    with pytest.raises(ValueError):
        resize(img, (5, 5), order=order)

    with pytest.raises(ValueError):
        warp(img, np.eye(3), order=order)
Example #4
0
def test_warp_identity():
    img = img_as_float(rgb2gray(astronaut()))
    assert len(img.shape) == 2
    assert np.allclose(img, warp(img, AffineTransform(rotation=0)))
    assert not np.allclose(img, warp(img, AffineTransform(rotation=0.1)))
    rgb_img = np.transpose(np.asarray([img, np.zeros_like(img), img]),
                           (1, 2, 0))
    warped_rgb_img = warp(rgb_img, AffineTransform(rotation=0.1))
    assert np.allclose(rgb_img, warp(rgb_img, AffineTransform(rotation=0)))
    assert not np.allclose(rgb_img, warped_rgb_img)
    # assert no cross-talk between bands
    assert np.all(0 == warped_rgb_img[:, :, 1])
Example #5
0
def test_warp_matrix():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1
    refx = np.zeros((5, 5), dtype=np.double)
    refx[1, 1] = 1

    matrix = np.array([[1, 0, 1], [0, 1, 1], [0, 0, 1]])

    # _warp_fast
    outx = warp(x, matrix, order=1)
    assert_array_almost_equal(outx, refx)
    # check for ndimage.map_coordinates
    outx = warp(x, matrix, order=5)
Example #6
0
def test_zero_image_size():
    with pytest.raises(ValueError):
        warp(np.zeros(0), SimilarityTransform())
    with pytest.raises(ValueError):
        warp(np.zeros((0, 10)), SimilarityTransform())
    with pytest.raises(ValueError):
        warp(np.zeros((10, 0)), SimilarityTransform())
    with pytest.raises(ValueError):
        warp(np.zeros((10, 10, 0)), SimilarityTransform())
Example #7
0
def test_bool_array_warnings():
    img = np.zeros((10, 10), dtype=bool)

    with expected_warnings(['Input image dtype is bool']):
        rescale(img, 0.5, anti_aliasing=True)

    with expected_warnings(['Input image dtype is bool']):
        resize(img, (5, 5), anti_aliasing=True)

    with expected_warnings(['Input image dtype is bool']):
        rescale(img, 0.5, order=1)

    with expected_warnings(['Input image dtype is bool']):
        resize(img, (5, 5), order=1)

    with expected_warnings(['Input image dtype is bool']):
        warp(img, np.eye(3), order=1)
Example #8
0
def test_homography():
    x = np.zeros((5, 5), dtype=np.double)
    x[1, 1] = 1
    theta = -np.pi / 2
    M = np.array([[np.cos(theta), -np.sin(theta), 0],
                  [np.sin(theta), np.cos(theta), 4], [0, 0, 1]])

    x90 = warp(x, inverse_map=ProjectiveTransform(M).inverse, order=1)
    assert_array_almost_equal(x90, np.rot90(x))
Example #9
0
 def applyTransformationOnIma(self, ima2):
     if not self.transfMat:
         self._findTransformationMatrix()
     alignedIma = warp(ima2,
                       ProjectiveTransform(matrix=self.transfMat),
                       output_shape=ima2.shape,
                       order=3,
                       mode='constant',
                       cval=np.median(ima2.data))
     return CCDData(alignedIma, unit=ima2.unit)
Example #10
0
def test_warp_callable():
    x = np.zeros((5, 5), dtype=np.double)
    x[2, 2] = 1
    refx = np.zeros((5, 5), dtype=np.double)
    refx[1, 1] = 1

    def shift(xy):
        return xy + 1

    outx = warp(x, shift, order=1)
    assert_array_almost_equal(outx, refx)
Example #11
0
def test_warp_nd():
    for dim in range(2, 8):
        shape = dim * (5, )

        x = np.zeros(shape, dtype=np.double)
        x_c = dim * (2, )
        x[x_c] = 1
        refx = np.zeros(shape, dtype=np.double)
        refx_c = dim * (1, )
        refx[refx_c] = 1

        coord_grid = dim * (slice(0, 5, 1), )
        coords = np.array(np.mgrid[coord_grid]) + 1

        outx = warp(x, coords, order=0, cval=0)

        assert_array_almost_equal(outx, refx)
Example #12
0
def test_warp_clip_cval_not_used(order):
    # Test that clipping does not consider cval part of the input range if it
    # is not used in the output image

    x = np.ones((15, 15), dtype=np.float64)
    x[5:-5, 5:-5] = 2

    # Transform the image by stretching it out by one pixel on each side so
    # that cval will not actually be used
    transform = AffineTransform(scale=15/(15+2), translation=(1, 1))
    with expected_warnings(['Bi-quadratic.*bug'] if order == 2 else None):
        outx = warp(x, transform, mode='constant', order=order, cval=0,
                    clip=True)

    # At higher orders of interpolation, the transformed image has overshoots
    # beyond the input range that should be clipped to the range 1 to 2.  Even
    # though cval=0, the minimum value of the clipped output image should be
    # 1 and not affected by the unused cval.
    assert_array_almost_equal(outx.min(), 1)
Example #13
0
def test_inverse():
    tform = SimilarityTransform(scale=0.5, rotation=0.1)
    inverse_tform = SimilarityTransform(matrix=np.linalg.inv(tform.params))
    image = np.arange(10 * 10).reshape(10, 10).astype(np.double)
    assert_array_equal(warp(image, inverse_tform), warp(image, tform.inverse))
Example #14
0
def test_invalid():
    with pytest.raises(ValueError):
        warp(np.ones((4, 3, 3, 3)), SimilarityTransform())
Example #15
0
def test_const_cval_out_of_range():
    img = np.random.randn(100, 100)
    cval = -10
    warped = warp(img, AffineTransform(translation=(10, 10)), cval=cval)
    assert np.sum(warped == cval) == (2 * 100 * 10 - 10 * 10)
Example #16
0
def radon(image, theta=None):
    """
    Calculates the radon transform of an image given specified
    projection angles.
    Parameters
    ----------
    image : array_like
        Input image. The rotation axis will be located in the pixel with
        indices ``(image.shape[0] // 2, image.shape[1] // 2)``.
    theta : array_like, optional
        Projection angles (in degrees). If `None`, the value is set to
        np.arange(180).
    circle : boolean, optional
        Assume image is zero outside the inscribed circle, making the
        width of each projection (the first dimension of the sinogram)
        equal to ``min(image.shape)``.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input
        image is converted according to the conventions of `img_as_float`.
        Also see https://scikit-image.org/docs/dev/user_guide/data_types.html
    Returns
    -------
    radon_image : ndarray
        Radon transform (sinogram).  The tomography rotation axis will lie
        at the pixel index ``radon_image.shape[0] // 2`` along the 0th
        dimension of ``radon_image``.
    References
    ----------
    .. [1] AC Kak, M Slaney, "Principles of Computerized Tomographic
           Imaging", IEEE Press 1988.
    .. [2] B.R. Ramesh, N. Srinivasa, K. Rajgopal, "An Algorithm for Computing
           the Discrete Radon Transform With Some Applications", Proceedings of
           the Fourth IEEE Region 10 International Conference, TENCON '89, 1989
    Notes
    -----
    Based on code of Justin K. Romberg
    (https://www.clear.rice.edu/elec431/projects96/DSP/bpanalysis.html)
    """
    
    image = convert_to_float(image, None)
    theta = np.linspace(0., 180., max(image.shape), endpoint=False)

    with tf.compat.v1.Session() as sess:
        diagonal = tf.sqrt(2.0) * max(image.shape)
        pad = [tf.dtypes.cast(tf.math.ceil(diagonal - s), tf.int32) for s in image.shape]
        new_center = [(s + p) // 2 for s, p in zip(image.shape, pad)]
        old_center = [s // 2 for s in image.shape]
        pad_before = [nc - oc for oc, nc in zip(old_center, new_center)]
        pad_width = [(pb, p - pb) for pb, p in zip(pad_before, pad)]
        padded_image = tf.pad(image, pad_width, mode='constant', constant_values=0)

        # padded_image is always square
        if padded_image.shape[0] != padded_image.shape[1]:
            raise ValueError('padded_image must be a square')

        center = padded_image.shape[0] // 2

        radon_image = np.zeros((padded_image.shape[0], len(theta)))

        # convert degree to radian

        for i, angle in enumerate(np.deg2rad(theta)):
            cos_a, sin_a = tf.math.cos(angle), tf.math.sin(angle)

            R = tf.Variable(list([[cos_a, sin_a, -center * (cos_a + sin_a - 1)],
                          [-sin_a, cos_a, -center * (cos_a - sin_a - 1)],
                          [0, 0, 1]]))

            init_op = tf.compat.v1.global_variables_initializer()

            sess.run(init_op)

            rotated = wp.warp(padded_image.eval(), R.eval(), clip=False)

            # update transformed image
            radon_image[:, i] = rotated.sum(0)

    return radon_image