import warnings import numpy as np from skimage import img_as_float from skimage.util.dtype import dtype_range, dtype_limits from skimage._shared.utils import deprecated __all__ = ['histogram', 'cumulative_distribution', 'equalize', 'rescale_intensity', 'adjust_gamma', 'adjust_log', 'adjust_sigmoid'] DTYPE_RANGE = dtype_range.copy() DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items()) DTYPE_RANGE.update({'uint10': (0, 2**10 - 1), 'uint12': (0, 2**12 - 1), 'uint14': (0, 2**14 - 1), 'bool': dtype_range[np.bool_], 'float': dtype_range[np.float64]}) def histogram(image, nbins=256): """Return histogram of image. Unlike `numpy.histogram`, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution. The histogram is computed on the flattened image: for color images, the function should be used separately on each channel to obtain a histogram for each color channel.
import warnings import numpy as np from skimage import img_as_float from skimage.util.dtype import dtype_range, dtype_limits __all__ = [ 'histogram', 'cumulative_distribution', 'equalize', 'rescale_intensity', 'adjust_gamma', 'adjust_log', 'adjust_sigmoid' ] DTYPE_RANGE = dtype_range.copy() DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items()) DTYPE_RANGE.update({ 'uint10': (0, 2**10 - 1), 'uint12': (0, 2**12 - 1), 'uint14': (0, 2**14 - 1), 'bool': dtype_range[np.bool_], 'float': dtype_range[np.float64] }) def histogram(image, nbins=256): """Return histogram of image. Unlike `numpy.histogram`, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution. The histogram is computed on the flattened image: for color images, the function should be used separately on each channel to obtain a histogram
def test_invert_roundtrip(): for t, limits in dtype_range.items(): image = np.array(limits, dtype=t) expected = invert(invert(image)) assert_array_equal(image, expected)