Example #1
0
def kalman_quat(rate, acc, omega, mag):
    '''
    Calclulate the orientation from IMU magnetometer data.

    Parameters
    ----------
    rate : float
    	   sample rate [Hz]	
    acc : (N,3) ndarray
    	  linear acceleration [m/sec^2]
    omega : (N,3) ndarray
    	  angular velocity [rad/sec]
    mag : (N,3) ndarray
    	  magnetic field orientation

    Returns
    -------
    qOut : (N,4) ndarray
    	   unit quaternion, describing the orientation relativ to the coordinate system spanned by the local magnetic field, and gravity

    Notes
    -----
    Based on "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman, E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)

    '''

    numData = len(acc)

    # Set parameters for Kalman Filter
    tstep = 1. / rate
    tau = [0.5, 0.5, 0.5]  # from Yun, 2006

    # Initializations
    x_k = np.zeros(7)  # state vector
    z_k = np.zeros(7)  # measurement vector
    z_k_pre = np.zeros(7)
    P_k = np.matrix(np.eye(7))  # error covariance matrix P_k

    Phi_k = np.matrix(np.zeros(
        (7, 7)))  # discrete state transition matrix Phi_k
    for ii in range(3):
        Phi_k[ii, ii] = np.exp(-tstep / tau[ii])

    H_k = np.matrix(np.eye(7))  # Identity matrix

    Q_k = np.matrix(np.zeros((7, 7)))  # process noise matrix Q_k
    D = 0.0001 * r_[0.4, 0.4, 0.4]  # [rad^2/sec^2]; from Yun, 2006
    # check 0.0001 in Yun
    for ii in range(3):
        Q_k[ii,
            ii] = D[ii] / (2 * tau[ii]) * (1 - np.exp(-2 * tstep / tau[ii]))

    # Evaluate measurement noise covariance matrix R_k
    R_k = np.matrix(np.zeros((7, 7)))
    r_angvel = 0.01
    # [rad**2/sec**2]; from Yun, 2006
    r_quats = 0.0001
    # from Yun, 2006
    for ii in range(7):
        if ii < 3:
            R_k[ii, ii] = r_angvel
        else:
            R_k[ii, ii] = r_quats

    # Calculation of orientation for every time step
    qOut = np.zeros((numData, 4))

    for ii in range(numData):
        accelVec = acc[ii, :]
        magVec = mag[ii, :]
        angvelVec = omega[ii, :]
        z_k_pre = z_k.copy(
        )  # watch out: by default, Python passes the reference!!

        # Evaluate quaternion based on acceleration and magnetic field data
        accelVec_n = vector.normalize(accelVec)
        magVec_hor = magVec - accelVec_n * accelVec_n.dot(magVec)
        magVec_n = vector.normalize(magVec_hor)
        basisVectors = np.vstack((magVec_n, np.cross(accelVec_n,
                                                     magVec_n), accelVec_n)).T
        quatRef = quat.quatinv(quat.rotmat2quat(basisVectors)).flatten()

        # Update measurement vector z_k
        z_k[:3] = angvelVec
        z_k[3:] = quatRef

        # Calculate Kalman Gain
        # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
        # Check: why is H_k used in the original formulas?
        K_k = P_k * np.linalg.inv(P_k + R_k)

        # Update state vector x_k
        x_k += np.array(K_k.dot(z_k - z_k_pre)).ravel()

        # Evaluate discrete state transition matrix Phi_k
        Phi_k[3, :] = r_[-x_k[4] * tstep / 2, -x_k[5] * tstep / 2,
                         -x_k[6] * tstep / 2, 1, -x_k[0] * tstep / 2,
                         -x_k[1] * tstep / 2, -x_k[2] * tstep / 2]
        Phi_k[4, :] = r_[x_k[3] * tstep / 2, -x_k[6] * tstep / 2,
                         x_k[5] * tstep / 2, x_k[0] * tstep / 2, 1,
                         x_k[2] * tstep / 2, -x_k[1] * tstep / 2]
        Phi_k[5, :] = r_[x_k[6] * tstep / 2, x_k[3] * tstep / 2,
                         -x_k[4] * tstep / 2, x_k[1] * tstep / 2,
                         -x_k[2] * tstep / 2, 1, x_k[0] * tstep / 2]
        Phi_k[6, :] = r_[-x_k[5] * tstep / 2, x_k[4] * tstep / 2,
                         x_k[3] * tstep / 2, x_k[2] * tstep / 2,
                         x_k[1] * tstep / 2, -x_k[0] * tstep / 2, 1]

        # Update error covariance matrix
        #P_k = (eye(7)-K_k*H_k)*P_k
        # Check: why is H_k used in the original formulas?
        P_k = (H_k - K_k) * P_k

        # Projection of state quaternions
        x_k[3:] += quat.quatmult(0.5 * x_k[3:], r_[0, x_k[:3]]).flatten()
        x_k[3:] = vector.normalize(x_k[3:])
        x_k[:3] = np.zeros(3)
        x_k[:3] = tstep * (-x_k[:3] + z_k[:3])

        qOut[ii, :] = x_k[3:]

        # Projection of error covariance matrix
        P_k = Phi_k * P_k * Phi_k.T + Q_k

    # Make the first position the reference position
    qOut = quat.quatmult(qOut, quat.quatinv(qOut[0]))

    return qOut
Example #2
0
def kalman_quat(rate, acc, omega, mag):
    '''
    Calclulate the orientation from IMU magnetometer data.

    Parameters
    ----------
    rate : float
    	   sample rate [Hz]	
    acc : (N,3) ndarray
    	  linear acceleration [m/sec^2]
    omega : (N,3) ndarray
    	  angular velocity [rad/sec]
    mag : (N,3) ndarray
    	  magnetic field orientation

    Returns
    -------
    qOut : (N,4) ndarray
    	   unit quaternion, describing the orientation relativ to the coordinate system spanned by the local magnetic field, and gravity

    Notes
    -----
    Based on "Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking" Yun, X. and Bachman, E.R., IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, 1216-1227 (2006)

    '''

    numData = len(acc)

    # Set parameters for Kalman Filter
    tstep = 1/rate
    tau = [0.5, 0.5, 0.5]	# from Yun, 2006

    # Initializations 
    x_k = np.zeros(7)	# state vector
    z_k = np.zeros(7)   # measurement vector
    z_k_pre = np.zeros(7)
    P_k = np.matrix( np.eye(7) )		 # error covariance matrix P_k

    Phi_k = np.matrix( np.zeros((7,7)) ) # discrete state transition matrix Phi_k
    for ii in range(3):
        Phi_k[ii,ii] = np.exp(-tstep/tau[ii])

    H_k = np.matrix( np.eye(7) )		# Identity matrix

    Q_k = np.matrix( np.zeros((7,7)) )	# process noise matrix Q_k
    D = 0.0001*r_[0.4, 0.4, 0.4]		# [rad^2/sec^2]; from Yun, 2006
                                                                            # check 0.0001 in Yun
    for ii in range(3):
        Q_k[ii,ii] =  D[ii]/(2*tau[ii])  * ( 1-np.exp(-2*tstep/tau[ii]) )

    # Evaluate measurement noise covariance matrix R_k
    R_k = np.matrix( np.zeros((7,7)) )
    r_angvel = 0.01;      # [rad**2/sec**2]; from Yun, 2006
    r_quats = 0.0001;     # from Yun, 2006
    for ii in range(7):
        if ii<3:
            R_k[ii,ii] = r_angvel
        else:
            R_k[ii,ii] = r_quats

    # Calculation of orientation for every time step
    qOut = np.zeros( (numData,4) )

    for ii in range(numData):
        accelVec  = acc[ii,:]
        magVec    = mag[ii,:]
        angvelVec = omega[ii,:]
        z_k_pre = z_k.copy()	# watch out: by default, Python passes the reference!!

        # Evaluate quaternion based on acceleration and magnetic field data
        accelVec_n = vector.normalize(accelVec)
        magVec_hor = magVec - accelVec_n * accelVec_n.dot(magVec)
        magVec_n   = vector.normalize(magVec_hor)
        basisVectors = np.vstack( (magVec_n, np.cross(accelVec_n, magVec_n), accelVec_n) ).T
        quatRef = quat.quatinv(quat.rotmat2quat(basisVectors)).flatten()

        # Update measurement vector z_k
        z_k[:3] = angvelVec
        z_k[3:] = quatRef

        # Calculate Kalman Gain
        # K_k = P_k * H_k.T * inv(H_k*P_k*H_k.T + R_k)
        # Check: why is H_k used in the original formulas?
        K_k = P_k * np.linalg.inv(P_k + R_k)

        # Update state vector x_k
        x_k += np.array( K_k.dot(z_k-z_k_pre) ).ravel()

        # Evaluate discrete state transition matrix Phi_k
        Phi_k[3,:] = r_[-x_k[4]*tstep/2, -x_k[5]*tstep/2, -x_k[6]*tstep/2,              1, -x_k[0]*tstep/2, -x_k[1]*tstep/2, -x_k[2]*tstep/2]
        Phi_k[4,:] = r_[ x_k[3]*tstep/2, -x_k[6]*tstep/2,  x_k[5]*tstep/2, x_k[0]*tstep/2,               1,  x_k[2]*tstep/2, -x_k[1]*tstep/2]
        Phi_k[5,:] = r_[ x_k[6]*tstep/2,  x_k[3]*tstep/2, -x_k[4]*tstep/2, x_k[1]*tstep/2, -x_k[2]*tstep/2,               1,  x_k[0]*tstep/2]
        Phi_k[6,:] = r_[-x_k[5]*tstep/2,  x_k[4]*tstep/2,  x_k[3]*tstep/2, x_k[2]*tstep/2,  x_k[1]*tstep/2, -x_k[0]*tstep/2,               1]

        # Update error covariance matrix
        #P_k = (eye(7)-K_k*H_k)*P_k
        # Check: why is H_k used in the original formulas?
        P_k = (H_k - K_k) * P_k

        # Projection of state quaternions
        x_k[3:] += quat.quatmult(0.5*x_k[3:],r_[0, x_k[:3]]).flatten()
        x_k[3:] = vector.normalize( x_k[3:] )
        x_k[:3] = np.zeros(3)
        x_k[:3] = tstep * (-x_k[:3]+z_k[:3])

        qOut[ii,:] = x_k[3:]

        # Projection of error covariance matrix
        P_k = Phi_k * P_k * Phi_k.T + Q_k

    # Make the first position the reference position
    qOut = quat.quatmult(qOut, quat.quatinv(qOut[0]))
        
    return qOut
Example #3
0
def calc_QPos(R_initialOrientation, omega, initialPosition, accMeasured, rate):
    ''' Reconstruct position and orientation, from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]

    Example
    -------
    >>> q1, pos1 = calc_QPos(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = 9.81
    g0 = np.linalg.inv(R_initialOrientation).dot(r_[0, 0, g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.qrotate(accMeasured[0], g0)
    R0 = quat.quat2rotmat(q0)

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    R_ref = R_initialOrientation.dot(R0)
    q_ref = quat.rotmat2quat(R_ref)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.vel2quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.quatinv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.quatmult(q, quat.quatinv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan * np.ones_like(accReSpace)
    pos = np.nan * np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:, ii] = cumtrapz(accReSpace[:, ii], dx=1. / rate, initial=0)
        pos[:, ii] = cumtrapz(vel[:, ii],
                              dx=1. / rate,
                              initial=initialPosition[ii])

    return (q, pos)
Example #4
0
def calc_QPos(R_initialOrientation, omega, initialPosition, accMeasured, rate):
    ''' Reconstruct position and orientation, from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]

    Example
    -------
    >>> q1, pos1 = calc_QPos(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = 9.81
    g0 = np.linalg.inv(R_initialOrientation).dot(r_[0,0,g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.qrotate(accMeasured[0], g0)    
    R0 = quat.quat2rotmat(q0)

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    R_ref = R_initialOrientation.dot(R0)
    q_ref = quat.rotmat2quat(R_ref)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.vel2quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = r_[0, 0, g] 
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.quatinv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.quatmult(q, quat.quatinv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan*np.ones_like(accReSpace)
    pos = np.nan*np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:,ii] = cumtrapz(accReSpace[:,ii], dx=1./rate, initial=0)
        pos[:,ii] = cumtrapz(vel[:,ii],        dx=1./rate, initial=initialPosition[ii])

    return (q, pos)