class Word2Vec: def __init__(self, input_file_name, output_file_name): self.output_file_name = output_file_name self.data = InputData(input_file_name, MIN_COUNT) self.model = SkipGramModel(self.data.word_count, EMB_DIMENSION) self.lr = LR self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr) def train(self): print("SkipGram Training......") pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE) print("pairs_count", pairs_count) batch_count = pairs_count / BATCH_SIZE print("batch_count", batch_count) process_bar = tqdm(range(int(batch_count))) for i in process_bar: pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE) pos_pairs, neg_pairs = self.data.get_pairs(pos_pairs) pos_u = [pair[0] for pair in pos_pairs] pos_v = [int(pair[1]) for pair in pos_pairs] neg_u = [pair[0] for pair in neg_pairs] neg_v = [int(pair[1]) for pair in neg_pairs] self.optimizer.zero_grad() loss = self.model.forward(pos_u, pos_v, neg_u, neg_v) loss.backward() self.optimizer.step() if i * BATCH_SIZE % 100000 == 0: self.lr = self.lr * (1.0 - 1.0 * i / batch_count) for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr self.model.save_embedding(self.data.id2word_dict, self.output_file_name)
class Word2Vec: def __init__(self, input_file_name, output_file_name): self.output_file_name = output_file_name self.data = InputData(input_file_name, MIN_COUNT) self.model = SkipGramModel(self.data.word_count, EMB_DIMENSION).cuda() self.lr = LR self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr) def train(self): for _ in range(1, EPOCH + 1): print("SkipGram Training......") pairs_count = self.data.evaluate_pairs_count(WINDOW_SIZE) print("pairs_count", pairs_count) batch_count = pairs_count / BATCH_SIZE print("batch_count", batch_count) process_bar = tqdm(range(int(batch_count))) for i in process_bar: pos_pairs = self.data.get_batch_pairs(BATCH_SIZE, WINDOW_SIZE) pos_pairs, neg_pairs = self.data.get_pairs(pos_pairs) pos_u = [pair[0] for pair in pos_pairs] pos_v = [int(pair[1]) for pair in pos_pairs] neg_u = [pair[0] for pair in neg_pairs] neg_v = [int(pair[1]) for pair in neg_pairs] self.optimizer.zero_grad() loss = self.model.forward(pos_u, pos_v, neg_u, neg_v) loss.backward() self.optimizer.step() if i * BATCH_SIZE % 100000 == 0: self.lr = self.lr * (1.0 - 1.0 * i / batch_count) for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr process_bar.set_postfix(loss=loss.data.cpu().numpy()) process_bar.update() print('\n') torch.save(self.model.state_dict(), "../results/url_with_location_skipgram_hs_wyz.pkl") self.model.save_embedding(self.data.id2word_dict, self.output_file_name)