Example #1
0
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()
    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(100, args.fixk)

    fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    try:
        fixk_file = open(fixk_saved, "rb")
        data = pickle.load(fixk_file)
    except IOError:
        data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
        fixk_file = open(fixk_saved, "wb")
        pickle.dump(data, fixk_file)

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__


    #### STUDENT CLASSIFIER
    clf = linear_model.LogisticRegression(penalty="l1", C=1)
    print "\nStudent Classifier: %s" % clf

    #### EXPERT CLASSIFIER

    exp_clf = linear_model.LogisticRegression(penalty='l1', C=.3)
    exp_clf.fit(data.test.bow, data.test.target)
    expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Cheating experiment - use full uncertainty query k words")
    t0 = time.time()
    ### experiment starts
    tx =[]
    tac = []
    tau = []
    for t in range(args.trials):
        trial_accu =[]

        trial_aucs = []

        trial_x_axis = []
        print "*" * 60
        print "Trial: %s" % t

        student = randomsampling.UncertaintyLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)
        print "\nStudent: %s " % student
        train_indices = []
        train_x = []
        train_y = []
        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False

        current_cost = 0
        iteration = 0
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:

            if not bootstrapped:
                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:
                query_index = student.pick_next(pool=pool, k=step_size)

            query = pool.fixk[query_index]  # query with k words

            query_size = [len(vct_analizer(x)) for x in pool.kwords[query_index]]

            ground_truth = pool.target[query_index]
            #labels, spent = expert.label(unlabeled=query, target=ground_truth)
            if iteration == 0: ## bootstrap uses ground truth
                labels = ground_truth
                spent = [0] * len(ground_truth) ## bootstrap cost is ignored
            else:
                labels = expert.label_instances(query, ground_truth)
                spent = expert.estimate_instances(query_size)


            ## add data recent acquired to train
            ## CHANGE: if label is not useful, ignore and do not charge money for it
            useful_answers = np.array([[x, y, z] for x, y, z in zip(query_index, labels, spent) if y is not None])

            # train_indices.extend(query_index)
            if useful_answers.shape[0] != 0:
                train_indices.extend(useful_answers[:, 0])

                # add labels to training
                train_x = pool.data[train_indices]  ## train with all the words

                # update labels with the expert labels
                train_y.extend(useful_answers[:, 1])

                #count for cost
                ### accumulate the cost of the query
                # query_cost = np.array(spent).sum()
                # current_cost += query_cost
                query_cost = useful_answers[:, 2]
                query_cost = np.sum(query_cost)
                current_cost += query_cost

            if train_x.shape[0] != len(train_y):
                raise Exception("Training data corrupted!")

            # remove labels from pool
            pool.remaining.difference_update(query_index)

            # retrain the model
            current_model = student.train(train_x, train_y)

            # evaluate and save results
            y_probas = current_model.predict_proba(data.test.bow)

            auc = metrics.roc_auc_score(data.test.target, y_probas[:, 1])

            pred_y = current_model.classes_[np.argmax(y_probas, axis=1)]

            accu = metrics.accuracy_score(data.test.target, pred_y)

            print ("TS:{0}\tAccu:{1:.3f}\tAUC:{2:.3f}\tCost:{3:.2f}\tCumm:{4:.2f}\tSpent:{5}".format(len(train_indices),
                                                                                            accu,
                                                                                            auc, query_cost,
                                                                                            current_cost, spent))

            ## the results should be based on the cost of the labeling
            if iteration > 0:   # bootstrap iteration

                student.budget -= query_cost ## Bootstrap doesn't count

                x_axis_range = current_cost
                x_axis[x_axis_range].append(current_cost)
                ## save results
                accuracies[x_axis_range].append(accu)
                aucs[x_axis_range].append(auc)

                ## partial trial results

                trial_accu.append([x_axis_range, accu])
                trial_aucs.append([x_axis_range, auc])
            iteration += 1

        # end of budget loop

        tac.append(trial_accu)
        tau.append(trial_aucs)
    #end trial loop

    accuracies = extrapolate_trials(tac)
    aucs = extrapolate_trials(tau)

    print("Elapsed time %.3f" % (time.time() - t0))
    print_extrapolated_results(accuracies, aucs)
Example #2
0
def main():
    print args
    print

    accuracies = defaultdict(lambda: [])

    ora_accu = defaultdict(lambda: [])

    oracle_accuracies =[]
    ora_cm = defaultdict(lambda: [])
    lbl_dit = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = TfidfVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=False, ngram_range=(1, 1),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())

    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = 10

    args.fixk = None

    data, vct = load_from_file(args.train, [categories[3]], args.fixk, min_size, vct, raw=True)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = experiment_utils.parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = experiment_utils.set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    ### SENTENCE TRANSFORMATION
    if args.train == "twitter":
        sent_detector = TwitterSentenceTokenizer()
    else:
        sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')

    ## delete <br> to "." to recognize as end of sentence
    data.train.data = experiment_utils.clean_html(data.train.data)
    data.test.data = experiment_utils.clean_html(data.test.data)

    print("Train:{}, Test:{}, {}".format(len(data.train.data), len(data.test.data), data.test.target.shape[0]))
    ## Get the features of the sentence dataset

    ## create splits of data: pool, test, oracle, sentences
    expert_data = Bunch()
    if not args.fulloracle:
        train_test_data = Bunch()

        expert_data.sentence, train_test_data.pool = split_data(data.train)
        expert_data.oracle, train_test_data.test = split_data(data.test)

        data.train.data = train_test_data.pool.train.data
        data.train.target = train_test_data.pool.train.target

        data.test.data = train_test_data.test.train.data
        data.test.target = train_test_data.test.train.target

    ## convert document to matrix
    data.train.bow = vct.fit_transform(data.train.data)
    data.test.bow = vct.transform(data.test.data)

    #### EXPERT CLASSIFIER: ORACLE
    print("Training Oracle expert")
    exp_clf = experiment_utils.set_classifier(args.classifier, parameter=args.expert_penalty)

    if not args.fulloracle:
        print "Training expert documents:%s" % len(expert_data.oracle.train.data)
        labels, sent_train = experiment_utils.split_data_sentences(expert_data.oracle.train, sent_detector, vct, limit=args.limit)

        expert_data.oracle.train.data = sent_train
        expert_data.oracle.train.target = np.array(labels)
        expert_data.oracle.train.bow = vct.transform(expert_data.oracle.train.data)

        exp_clf.fit(expert_data.oracle.train.bow, expert_data.oracle.train.target)
    else:
        # expert_data.data = np.concatenate((data.train.data, data.test.data))
        # expert_data.target = np.concatenate((data.train.target, data.test.target))
        expert_data.data =data.train.data
        expert_data.target = data.train.target
        expert_data.target_names = data.train.target_names
        labels, sent_train = experiment_utils.split_data_sentences(expert_data, sent_detector, vct, limit=args.limit)
        expert_data.bow = vct.transform(sent_train)
        expert_data.target = labels
        expert_data.data = sent_train
        exp_clf.fit(expert_data.bow, expert_data.target)

    if "neutral" in args.expert:
        expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                             cost_function=cost_model.cost_function)
    elif "true" in args.expert:
        expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    elif "pred" in args.expert:
        expert = baseexpert.PredictingExpert(exp_clf,  #threshold=args.neutral_threshold,
                                             cost_function=cost_model.cost_function)
    elif "human" in args.expert:
        expert = baseexpert.HumanExpert(", ".join(["{}={}".format(a,b) for a,b in enumerate(data.train.target_names)])+"? > ")
    else:
        raise Exception("We need an expert!")

    print "\nExpert: %s " % expert

    #### EXPERT CLASSIFIER: SENTENCES
    print("Training sentence expert")
    sent_clf = None
    if args.cheating:
        labels, sent_train = experiment_utils.split_data_sentences(expert_data.sentence.train, sent_detector, vct, limit=args.limit)

        expert_data.sentence.train.data = sent_train
        expert_data.sentence.train.target = np.array(labels)
        expert_data.sentence.train.bow = vct.transform(expert_data.sentence.train.data)
        sent_clf = experiment_utils.set_classifier(args.classifier, parameter=args.expert_penalty)
        sent_clf.fit(expert_data.sentence.train.bow, expert_data.sentence.train.target)

    #### STUDENT CLASSIFIER
    clf = experiment_utils.set_classifier(args.classifier, parameter=args.expert_penalty)

    print "\nStudent Classifier: %s" % clf
    print "\nSentence Classifier: %s" % sent_clf
    print "\nExpert Oracle Classifier: %s" % exp_clf
    print "\nPenalty Oracle:", exp_clf.C
    print "\nVectorizer: %s" % vct
    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Anytime active learning experiment - use objective function to pick data")
    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t

        student = get_student(clf, cost_model, sent_clf, sent_detector, vct)
        student.human_mode = args.expert == 'human'

        print "\nStudent: %s " % student

        train_indices = []
        neutral_data = []  # save the xik vectors
        train_x = []
        train_y = []
        neu_x = []  # data to train the classifier
        neu_y = np.array([])

        pool = Bunch()
        pool.data = data.train.bow.tocsr()  # full words, for training
        pool.text = data.train.data
        pool.target = data.train.target
        pool.predicted = []
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False
        current_cost = 0
        iteration = 0
        query_index = None
        query_size = None
        oracle_answers = 0
        calibrated=args.calibrate
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
            util = []

            if not bootstrapped:
                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                query = pool.data[query_index]
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:

                chosen = student.pick_next(pool=pool, step_size=step_size)

                query_index = [x for x, y in chosen]  # document id of chosen instances
                query = [y[0] for x, y in chosen]  # sentence of the document

                query_size = [1] * len(query_index)

            ground_truth = pool.target[query_index]

            if iteration == 0:  ## bootstrap uses ground truth
                labels = ground_truth
                spent = [0] * len(ground_truth)  ## bootstrap cost is ignored
            else:
                # print "ask labels"
                labels = expert.label_instances(query, ground_truth)
                spent = expert.estimate_instances(query_size)

            ### accumulate the cost of the query
            query_cost = np.array(spent).sum()
            current_cost += query_cost

            useful_answers = np.array([[x, y] for x, y in zip(query_index, labels) if y is not None])

            neutral_answers = np.array([[x, z] for x, y, z in zip(query_index, labels, query_size) if y is None]) \
                if iteration != 0 else np.array([])

            ## add data recent acquired to train
            if useful_answers.shape[0] != 0:
                train_indices.extend(useful_answers[:, 0])

                # add labels to training
                train_x = pool.data[train_indices]  # # train with all the words

                # update labels with the expert labels
                train_y.extend(useful_answers[:, 1])

            neu_x, neu_y, neutral_data = update_sentence(neutral_data, neu_x, neu_y, labels, query_index, pool, vct)
            # neu_x, neu_y, neutral_data = update_sentence_query(neutral_data, neu_x, neu_y, query, labels)

            if neu_y.shape[0] != neu_x.shape[0]:
                raise Exception("Training data corrupted!")
            if train_x.shape[0] != len(train_y):
                raise Exception("Training data corrupted!")

            # remove labels from pool
            pool.remaining.difference_update(query_index)

            # retrain the model
            current_model = student.train_all(train_x, train_y, neu_x, neu_y)

            # evaluate and save results
            y_probas = current_model.predict_proba(data.test.bow)

            auc = metrics.roc_auc_score(data.test.target, y_probas[:, 1])

            pred_y = current_model.classes_[np.argmax(y_probas, axis=1)]

            correct_labels = (np.array(ground_truth) == np.array(labels).reshape(len(labels))).sum()

            accu = metrics.accuracy_score(data.test.target, pred_y)

            print ("TS:{0}\tAccu:{1:.3f}\tAUC:{2:.3f}\tCost:{3:.2f}\tCumm:{4:.2f}\tGT:{5}\tneu:{6}\t{7}\tND:{8}\tTD:{9}\t ora_accu:{10}".format(
                len(train_indices),
                accu,
                auc, query_cost,
                current_cost,
                ground_truth,
                len(neutral_answers), neu_y.shape[0], neu_y.sum(), np.array(train_y).sum(), correct_labels))

            ## the results should be based on the cost of the labeling
            if iteration > 0:  # bootstrap iteration

                student.budget -= query_cost  ## Bootstrap doesn't count
                # oracle accuracy (from queries)
                oracle_answers += correct_labels
                x_axis_range = current_cost
                x_axis[x_axis_range].append(current_cost)
                ## save results
                accuracies[x_axis_range].append(accu)
                aucs[x_axis_range].append(auc)
                ora_accu[x_axis_range].append(1. * correct_labels)
                ora_cm[x_axis_range].append(metrics.confusion_matrix(ground_truth, labels, labels=np.unique(train_y)))
                lbl_dit[x_axis_range].append(np.sum(train_y))
                # partial trial results
                trial_accu.append([x_axis_range, accu])
                trial_aucs.append([x_axis_range, auc])
                # oracle_accuracies[x_axis_range].append(oracle_answers)
            iteration += 1
            # end of budget loop

        tac.append(trial_accu)
        tau.append(trial_aucs)
        oracle_accuracies.append(1.*oracle_answers / (len(train_indices)-bootstrap_size))
        print "Trial: {}, Oracle right answers: {}, Iteration: {}, Labels:{}, ACCU-OR:{}".format(t, oracle_answers,
                 iteration, len(train_indices)-bootstrap_size,1.*oracle_answers / (len(train_indices)-bootstrap_size))
        #end trial loop
    if args.cost_function not in "uniform":
        accuracies = experiment_utils.extrapolate_trials(tac, cost_25=parameters[1][1], step_size=args.step_size)
        aucs = experiment_utils.extrapolate_trials(tau, cost_25=parameters[1][1], step_size=args.step_size)
    print "\nAverage oracle accuracy: ", np.array(oracle_accuracies).mean()
    print("Elapsed time %.3f" % (time.time() - t0))
    cheating = "CHEATING" if args.cheating else "NOCHEAT"
    experiment_utils.print_extrapolated_results(accuracies, aucs, file_name=args.train+"-"+cheating+"-"+args.prefix+"-"+args.classifier+"-"+args.student)
    experiment_utils.oracle_accuracy(ora_accu, file_name=args.train+"-"+cheating+"-"+args.prefix+"-"+args.classifier+"-"+args.student, cm=ora_cm, num_trials=args.trials)
Example #3
0
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 1),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()
    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(50, args.fixk)

    if "imdb" in args.train:
        ########## IMDB MOVIE REVIEWS ###########
        data = load_imdb(args.train, shuffle=True, rnd=2356, vct=vct, min_size=min_size,
                               fix_k=args.fixk)  # should brind data as is
    elif "aviation" in args.train:
        raise Exception("We are not ready for that data yet")
    elif "20news" in args.train:
        ########## 20 news groups ######
        data = load_20newsgroups(categories=categories[0], vectorizer=vct, min_size=min_size,
                                       fix_k=args.fixk)  # for testing purposes
    elif "dummy" in args.train:
        ########## DUMMY DATA###########
        data = load_dummy("C:/Users/mramire8/Documents/code/python/data/dummy", shuffle=True,
                                rnd=2356, vct=vct, min_size=0, fix_k=args.fixk)
    else:
        raise Exception("We do not know that dataset")

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))
    #print(data.train.data[0])
    #### COST MODEL
    parameters = parse_parameters(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = set_cost_model(parameters)

    print "\nCost Model: %s" % cost_model.__class__.__name__

    #### ACCURACY MODEL
    # try:
    # #     accu_parameters = parse_parameters(args.accu_model)
    # except ValueError:
    accu_parameters = parse_parameters_mat(args.accu_model)
    # else
    #     print("Error: Accuracy parameters didn't work")

    print "Accuracy Parameters %s" % accu_parameters
    #if "fixed" in args.accu_function:
    #    accuracy_model = base_models.FixedAccuracyModel(accuracy_value=.7)
    #elif "log" in args.accu_function:
    #    accuracy_model = base_models.LogAccuracyModel(model=parameters)
    #elif "linear" in args.accu_function:
    #    accuracy_model = base_models.LRAccuracyModel(model=parameters)
    #else:
    #    raise Exception("We need a defined cost function options [fixed|log|linear]")
    #
    #print "\nAccuracy Model: %s " % accuracy_model

    #### CLASSIFIER
    #### Informed priors
    #feature_counts = np.ones(x_train.shape[0]) * x_train
    #feature_frequencies = feature_counts / np.sum(feature_counts)
    #alpha = feature_frequencies
    alpha = 1
    clf = MultinomialNB(alpha=alpha)
    print "\nClassifier: %s" % clf

    #### EXPERT MODEL
    #expert = baseexpert.BaseExpert()
    if "fixed" in args.expert:
        expert = baseexpert.FixedAccuracyExpert(accuracy_value=accu_parameters[0],
                                                cost_function=cost_model.cost_function)  #average value of accuracy of the experts
    elif "true" in args.expert:
        expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    elif "linear" in args.expert:
        #expert = baseexpert.LRFunctionExpert(model=[0.0019, 0.6363],cost_function=cost_model.cost_function)
        raise Exception("We do not know linear yet!!")
    elif "log" in args.expert:
        expert = baseexpert.LogFunctionExpert(model=accu_parameters, cost_function=cost_model.cost_function)
    elif "direct" in args.expert:
        expert = baseexpert.LookUpExpert(accuracy_value=accu_parameters, cost_function=cost_model.cost_function)
    else:
        raise Exception("We need a defined cost function options [fixed|log|linear]")
        #expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200
    eval_range = 1 if (args.budget / evaluation_points) <= 0 else args.budget / evaluation_points
    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          50))

    t0 = time.time()
    ### experiment starts
    for t in range(args.trials):
        print "*" * 60
        print "Trial: %s" % t
        # TODO shuffle the data??
        #student = baselearner.BaseLearner(model=clf, cost_model=cost_model, accuracy_model=accuracy_model, budget=args.budget,
        #                                  seed=t)
        student = randomsampling.RandomSamplingLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)
        print "\nStudent: %s " % student
        train_indices = []
        train_x = []
        train_y = []
        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        #for x in pool.fixk:
        #    print x.todense().sum()

        bootstrapped = False

        current_cost = 0
        iteration = 0
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:

            if not bootstrapped:
                ## random bootstrap
                #bt = randomsampling.BootstrapRandom(random_state=t * 10)

                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:
                query_index = student.pick_next(pool=pool, k=step_size)

            query = pool.fixk[query_index]  # query with k words

            query_size = [len(vct_analizer(x)) for x in pool.kwords[query_index]]

            #if query_size[0] >50:
            #    print "*** %s" % pool.kwords[query_index]

            ground_truth = pool.target[query_index]
            #labels, spent = expert.label(unlabeled=query, target=ground_truth)
            if iteration == 0: ## bootstrap uses ground truth
                labels = ground_truth
            else:
                #labels = expert.label_instances(query, ground_truth)
                labels = expert.label_instances(query_size, ground_truth)
                #spent = expert.estimate_instances(pool.kwords[query_index])
            spent = expert.estimate_instances(query_size)

            query_cost = np.array(spent).sum()
            current_cost += query_cost

            train_indices.extend(query_index)

            # remove labels from pool
            pool.remaining.difference_update(query_index)

            # add labels to training
            train_x = pool.data[train_indices]  ## train with all the words

            # update labels with the expert labels
            #train_y = pool.target[train_indices]
            train_y.extend(labels)
            if train_x.shape[0] != len(train_y):
                raise Exception("Training data corrupted!")

            # retrain the model
            current_model = student.train(train_x, train_y)
            # evaluate and save results
            y_probas = current_model.predict_proba(data.test.bow)

            #auc = metrics.roc_auc_score(data.test.target, y_probas[:,1])
            auc = metrics.roc_auc_score(data.test.target, y_probas[:, 1])

            pred_y = current_model.classes_[np.argmax(y_probas, axis=1)]

            accu = metrics.accuracy_score(data.test.target, pred_y)

            print (
            "TS:{0}\tAccu:{1:.3f}\tAUC:{2:.3f}\tCost:{3:.2f}\tCumm:{4:.2f}\tSpent:{5}".format(len(train_indices), accu,
                                                                                              auc, query_cost,
                                                                                              current_cost, spent))

            ## the results should be based on the cost of the labeling
            if iteration > 0: # bootstrap iteration

                student.budget -= query_cost ## Bootstrap doesn't count

                #x_axis_range = int(current_cost / eval_range)
                x_axis_range = current_cost
                x_axis[x_axis_range].append(current_cost)
                ## save results
                #accuracies[len(train_indices)].append(accu)
                #aucs[len(train_indices)].append(auc)
                accuracies[x_axis_range].append(accu)
                aucs[x_axis_range].append(auc)
            iteration += 1
    print("Elapsed time %.3f" % (time() - t0))
    print_results(x_axis, accuracies, aucs)
Example #4
0
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()

    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(100, args.fixk)

    if args.fixk < 0:
        args.fixk = None

    fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    try:
        print "Loading existing file... %s " % args.train
        fixk_file = open(fixk_saved, "rb")
        data = pickle.load(fixk_file)
        fixk_file.close()
        vectorizer = open("{0}vectorizer.p".format(args.train), "rb")
        vct = pickle.load(vectorizer)
        vectorizer.close()
    except (IOError, ValueError):
        print "Loading from scratch..."
        data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
        fixk_file = open(fixk_saved, "wb")
        pickle.dump(data, fixk_file)
        fixk_file.close()
        vectorizer = open("{0}vectorizer.p".format(args.train), "wb")
        pickle.dump(vct, vectorizer)
        vectorizer.close()

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    #### STUDENT CLASSIFIER
    clf = linear_model.LogisticRegression(penalty="l1", C=1)
    # clf = set_classifier(args.classifier)
    print "\nStudent Classifier: %s" % clf

    #### EXPERT CLASSIFIER

    exp_clf = linear_model.LogisticRegression(penalty='l1', C=args.expert_penalty)
    exp_clf.fit(data.test.bow, data.test.target)
    expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    print "\nExpert: %s " % expert

    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          min_size))
    print ("Anytime active learning experiment - use objective function to pick data")
    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t
        if args.student in "anyunc":
            student = randomsampling.AnytimeLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
        elif args.student in "lambda":
            student = randomsampling.AnytimeLearnerDiff(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model, lambda_value=args.lambda_value)
        elif args.student in "anyzero":
            student = randomsampling.AnytimeLearnerZeroUtility(model=clf, accuracy_model=None, budget=args.budget, seed=t, vcn=vct,
                                                    subpool=250, cost_model=cost_model)
        else:
            raise ValueError("Oops! We do not know that anytime strategy. Try again.")

        print "\nStudent: %s " % student
        train_indices = []
        neutral_text = []  # save the raw text of the queries
        neutral_data = []  # save the xik vectors
        train_x = []
        train_y = []
        neu_x = [] # data to train the classifier
        neu_y = np.array([])

        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        pool.text = data.train.data
        # pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        # pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool

        bootstrapped = False

        current_cost = 0
        iteration = 0
        query_index = None
        query_size = None
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:
            util = []
            if not bootstrapped:
                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                query = pool.data[query_index]
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:
                # print "pick instance"

                ## chose returns: index, k
                ## util returns: utility, k, unc
                query_chosen, util = student.pick_next(pool=pool, step_size=step_size)
                query_index = [a for a, b in query_chosen]
                query_size = [b for a, b in query_chosen]

                # query = pool.fixk[query_index]  # query with k words
                qk = []
                for q, k in query_chosen:
                    qk.append(" ".join(vct_analizer(pool.text[q])[0:int(k)]))
                query = vct.transform(qk)

            # query_size = [len(vct_analizer(x)) for x in pool.kwords[query_index]]

            ground_truth = pool.target[query_index]
            #labels, spent = expert.label(unlabeled=query, target=ground_truth)
            if iteration == 0: ## bootstrap uses ground truth
                labels = ground_truth
                spent = [0] * len(ground_truth) ## bootstrap cost is ignored
            else:
                # print "ask labels"
                labels = expert.label_instances(query, ground_truth)
                spent = expert.estimate_instances(query_size)

            ### accumulate the cost of the query
            query_cost = np.array(spent).sum()
            current_cost += query_cost
            # print query_index
            useful_answers = np.array([[x, y] for x, y in zip(query_index, labels) if y is not None])
            neutral_answers = np.array([[x, z] for x, y, z in zip(query_index, labels, query_size) if y is None]) \
                if iteration != 0 else np.array([])

            # print labels
            # print "label\tutility\tk\tunc"
            # print format_query(zip(labels, util))

            ## add data recent acquired to train
            if useful_answers.shape[0] != 0:
                # print "get training"
                # train_indices.extend(query_index)
                train_indices.extend(useful_answers[:, 0])

                # add labels to training
                train_x = pool.data[train_indices]  # # train with all the words

                # update labels with the expert labels
                #train_y = pool.target[train_indices]
                train_y.extend(useful_answers[:, 1])

            if neutral_answers.shape[0] != 0:
                # current query neutrals
                qlbl = []

                for xik, lbl in zip(query, labels):
                    # neutral_data.append(xik)
                    if isinstance(neutral_data, list):
                        neutral_data = xik
                    else:
                        neutral_data = vstack([neutral_data, xik], format='csr')
                    qlbl.append(neutral_label(lbl))

                ## append the labels of the current query
                neu_y = np.append(neu_y, qlbl)
                neu_x = neutral_data
                #end usefulanswers


            if train_x.shape[0] != len(train_y):
                raise Exception("Training data corrupted!")

            # remove labels from pool
            pool.remaining.difference_update(query_index)

            # retrain the model
            # current_model = student.train(train_x, train_y)
            # print "train models"
            current_model = student.train_all(train_x, train_y, neu_x, neu_y)
            # print "evaluate"
            # evaluate and save results
            y_probas = current_model.predict_proba(data.test.bow)

            auc = metrics.roc_auc_score(data.test.target, y_probas[:, 1])

            pred_y = current_model.classes_[np.argmax(y_probas, axis=1)]

            accu = metrics.accuracy_score(data.test.target, pred_y)

            print ("TS:{0}\tAccu:{1:.3f}\tAUC:{2:.3f}\tCost:{3:.2f}\tCumm:{4:.2f}\tSpent:{5}\tneu:{6}\t{7}".format(
                len(train_indices),
                accu,
                auc, query_cost,
                current_cost,
                format_spent(spent),
                len(neutral_answers), neu_y.shape[0]))

            ## the results should be based on the cost of the labeling
            if iteration > 0:   # bootstrap iteration

                student.budget -= query_cost ## Bootstrap doesn't count

                x_axis_range = current_cost
                x_axis[x_axis_range].append(current_cost)
                ## save results
                accuracies[x_axis_range].append(accu)
                aucs[x_axis_range].append(auc)
                # partial trial results
                trial_accu.append([x_axis_range, accu])
                trial_aucs.append([x_axis_range, auc])

            iteration += 1
            # end of budget loop

        tac.append(trial_accu)
        tau.append(trial_aucs)
        #end trial loop
    if args.cost_function not in "uniform":
        accuracies = extrapolate_trials(tac, cost_25=parameters[1][1], step_size=args.step_size)
        aucs = extrapolate_trials(tau, cost_25=parameters[1][1], step_size=args.step_size)

    print("Elapsed time %.3f" % (time.time() - t0))
    print_extrapolated_results(accuracies, aucs)
Example #5
0
def main():
    accuracies = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = CountVectorizer(encoding='latin-1', min_df=5, max_df=1.0, binary=True, ngram_range=(1, 3),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())
    vct_analizer = vct.build_tokenizer()
    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = max(10, args.fixk)

    if args.fixk < 0:
        args.fixk = None

    # data = load_dataset(args.train, args.fixk, categories[0], vct, min_size, percent=.5)
    # fixk_saved = "{0}{1}.p".format(args.train, args.fixk)

    data, vct = load_from_file(args.train, categories, args.fixk, min_size, vct)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    #### COST MODEL
    parameters = parse_parameters_mat(args.cost_model)
    print "Cost Parameters %s" % parameters
    cost_model = set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    #### ACCURACY MODEL
    accu_parameters = parse_parameters_mat(args.accu_model)

    #### CLASSIFIER
    clf = set_classifier(args.classifier)
    print "\nClassifier: %s" % clf

    #### EXPERT MODEL

    if "fixed" in args.expert:
        expert = baseexpert.FixedAccuracyExpert(accuracy_value=accu_parameters[0],
                                                cost_function=cost_model.cost_function)  #average value of accuracy of the experts
    elif "true" in args.expert:
        expert = baseexpert.TrueOracleExpert(cost_function=cost_model.cost_function)
    elif "linear" in args.expert:
        #expert = baseexpert.LRFunctionExpert(model=[0.0019, 0.6363],cost_function=cost_model.cost_function)
        raise Exception("We do not know linear yet!!")
    elif "log" in args.expert:
        expert = baseexpert.LogFunctionExpert(model=accu_parameters, cost_function=cost_model.cost_function)
    elif "direct" in args.expert:
        expert = baseexpert.LookUpExpert(accuracy_value=accu_parameters, cost_function=cost_model.cost_function)
    elif "neutral" in args.expert:
        exp_clf = LogisticRegression(penalty='l1', C=1)
        exp_clf.fit(data.test.bow, data.test.target)
        expert = baseexpert.NeutralityExpert(exp_clf, threshold=args.neutral_threshold,
                                         cost_function=cost_model.cost_function)
    else:
        raise Exception("We need a defined cost function options [fixed|log|linear]")

    exp_clf = LogisticRegression(penalty='l1', C=args.expert_penalty)
    exp_clf.fit(data.test.bow, data.test.target)
    print "\nExpert: %s " % expert
    coef = exp_clf.coef_[0]
    # print_features(coef, vct.get_feature_names())
    #### ACTIVE LEARNING SETTINGS
    step_size = args.step_size
    bootstrap_size = args.bootstrap
    evaluation_points = 200

    print("\nExperiment: step={0}, BT={1}, plot points={2}, fixk:{3}, minsize:{4}".format(step_size, bootstrap_size,
                                                                                          evaluation_points, args.fixk,
                                                                                          50))

    t0 = time.time()
    tac = []
    tau = []
    ### experiment starts
    for t in range(args.trials):
        trial_accu = []

        trial_aucs = []

        print "*" * 60
        print "Trial: %s" % t
        if  args.student in "unc":
            student = randomsampling.UncertaintyLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t,
                                                        subpool=250)
        else:
            student = randomsampling.RandomSamplingLearner(model=clf, accuracy_model=None, budget=args.budget, seed=t)

        print "\nStudent: %s " % student

        train_indices = []
        train_x = []
        train_y = []
        pool = Bunch()
        pool.data = data.train.bow.tocsr()   # full words, for training
        if args.fixk is None:
            pool.fixk = data.train.bow.tocsr()
        else:
            pool.fixk = data.train.bowk.tocsr()  # k words BOW for querying
        pool.target = data.train.target
        pool.predicted = []
        # pool.kwords = np.array(data.train.kwords)  # k words
        pool.remaining = set(range(pool.data.shape[0]))  # indices of the pool


        bootstrapped = False

        current_cost = 0
        iteration = 0
        while 0 < student.budget and len(pool.remaining) > step_size and iteration <= args.maxiter:

            if not bootstrapped:
                ## random bootstrap
                #bt = randomsampling.BootstrapRandom(random_state=t * 10)

                ## random from each bootstrap
                bt = randomsampling.BootstrapFromEach(t * 10)

                query_index = bt.bootstrap(pool=pool, k=bootstrap_size)
                bootstrapped = True
                print "Bootstrap: %s " % bt.__class__.__name__
                print
            else:
                query_index = student.pick_next(pool=pool, k=step_size)

            # query = pool.fixk[query_index]  # query with k words
            query = pool.data[query_index]
            # print query_index
            # query_size = [len(vct_analizer(x)) for x in pool.kwords[query_index]]
            query_size = [1]*query.shape[0]

            ground_truth = pool.target[query_index]

            if iteration == 0: ## bootstrap uses ground truth
                labels = ground_truth
                spent = [0] * len(ground_truth)
            else:
                labels = expert.label_instances(query, ground_truth)
                spent = expert.estimate_instances(query_size)

            query_cost = np.array(spent).sum()
            current_cost += query_cost

            # train_indices.extend(query_index)

            # remove labels from pool
            pool.remaining.difference_update(query_index)

            # add labels to training
            # train_x = pool.data[train_indices]  ## train with all the words

            # update labels with the expert labels
            useful_answers = np.array([[x, y] for x, y in zip(query_index, labels) if y is not None])
            if useful_answers.shape[0] != 0:
                train_indices.extend(useful_answers[:, 0])
                # add labels to training
                train_x = pool.data[train_indices]  ## train with all the words
                # update labels with the expert labels
                train_y.extend(useful_answers[:, 1])


            if train_x.shape[0] != len(train_y):
                raise Exception("Training data corrupted!")

            # retrain the model
            current_model = student.train(train_x, train_y)
            # evaluate and save results
            y_probas = current_model.predict_proba(data.test.bow)

            auc = metrics.roc_auc_score(data.test.target, y_probas[:, 1])

            pred_y = current_model.classes_[np.argmax(y_probas, axis=1)]

            accu = metrics.accuracy_score(data.test.target, pred_y)

            print (
            "TS:{0}\tAccu:{1:.3f}\tAUC:{2:.3f}\tCost:{3:.2f}\tCumm:{4:.2f}\tSpent:{5}".format(len(train_indices), accu,
                                                                                              auc, query_cost,
                                                                                              current_cost, format_spent(spent)))

            ## the results should be based on the cost of the labeling
            if iteration > 0: # bootstrap iteration

                student.budget -= query_cost ## Bootstrap doesn't count

                #x_axis_range = int(current_cost / eval_range)
                x_axis_range = current_cost
                x_axis[x_axis_range].append(current_cost)
                ## save results
                accuracies[x_axis_range].append(accu)
                aucs[x_axis_range].append(auc)
                trial_accu.append([x_axis_range, accu])
                trial_aucs.append([x_axis_range, auc])

            iteration += 1
            # end of budget loop

        tac.append(trial_accu)
        tau.append(trial_aucs)
        #end trial loop
    if args.cost_function not in "uniform":
        accuracies = extrapolate_trials(tac, cost_25=parameters[1][1], step_size=args.step_size)
        aucs = extrapolate_trials(tau, cost_25=parameters[1][1], step_size=args.step_size)

    print("Elapsed time %.3f" % (time.time() - t0))
    print_extrapolated_results(accuracies, aucs)