def hello_world():
    # load the iris datasets
    dataset = datasets.load_test_case()

    X = dataset.data
    y = dataset.target
    # fit a logistic regression model to the data

    response = []
    coordinates = []
    model = LogisticRegression()
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    predicted = model.fit(X_train, y_train).predict(X_test)

    i = 1
    print X_test

    for x in X_test:
        print i
        for y in x:
            print y
            response.append({"id": int(y)})
            break
    print json.dumps(response)
    resp = Response(json.dumps(response))
    resp.headers['Access-Control-Allow-Origin'] = '*'
    # make predictions
    return resp
Example #2
0
# Logistic Regression
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.cross_validation import train_test_split
# load the iris datasets
dataset = datasets.load_test_case()
X = dataset.data
y = dataset.target
# fit a logistic regression model to the data
model = GaussianNB()
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
predicted = model.fit(X_train, y_train).predict(X_test)
print(predicted)
# make predictions

print(metrics.classification_report(y_test, predicted))
print(metrics.confusion_matrix(y_test, predicted))