Example #1
0
def spca(data, num_components=None, alpha=1):
    # creates a matrix with sparse principal component analysis
    # build matrix with all data
    data = [d.flatten() for d in data if not any(isnan(d))]
    datamatrix = row_stack(data)

    # center data
    cdata = datamatrix - mean(datamatrix, axis=0)

    if num_components is None:
        num_components = cdata.shape[0]

    # do spca on matrix
    spca = SparsePCA(n_components=num_components, alpha=alpha)
    spca.fit(cdata)

    # normalize components
    components = spca.components_.T
    for r in range(0, components.shape[1]):
        compnorm = numpy.apply_along_axis(numpy.linalg.norm, 0, components[:,
                                                                           r])
        if not compnorm == 0:
            components[:, r] /= compnorm
    components = components.T

    # calc adjusted explained variance from "Sparse Principal Component Analysis" by Zou, Hastie, Tibshirani
    spca.components_ = components
    #nuz = spca.transform(cdata).T
    nuz = ridge_regression(spca.components_.T,
                           cdata.T,
                           0.01,
                           solver='dense_cholesky').T

    #nuz = dot(components, cdata.T)
    q, r = qr(nuz.T)
    cumulative_var = []
    for i in range(1, num_components + 1):
        cumulative_var.append(trace(r[0:i, ] * r[0:i, ]))
    explained_var = [math.sqrt(cumulative_var[0])]
    for i in range(1, num_components):
        explained_var.append(
            math.sqrt(cumulative_var[i]) - math.sqrt(cumulative_var[i - 1]))

    order = numpy.argsort(explained_var)[::-1]
    components = numpy.take(components, order, axis=0)
    evars = numpy.take(explained_var, order).tolist()
    #evars = numpy.take(explained_var,order)
    #order2 = [0,1,2,4,5,7,12,19]
    #components = numpy.take(components,order2,axis=0)
    #evars = numpy.take(evars,order2).tolist()

    return components, evars
Example #2
0
def spca(data, num_components=None, alpha=1):
		# creates a matrix with sparse principal component analysis
		# build matrix with all data
		data = [d.flatten() for d in data if not any(isnan(d))]
		datamatrix = row_stack(data)
		
		# center data
		cdata = datamatrix - mean(datamatrix, axis=0)
		
		if num_components is None:
			num_components = cdata.shape[0]
		
		# do spca on matrix
		spca = SparsePCA(n_components=num_components, alpha=alpha)
		spca.fit(cdata)
		
		# normalize components
		components = spca.components_.T
		for r in xrange(0,components.shape[1]):
			compnorm = numpy.apply_along_axis(numpy.linalg.norm, 0, components[:,r])
			if not compnorm == 0:
				components[:,r] /= compnorm
		components = components.T
		
		# calc adjusted explained variance from "Sparse Principal Component Analysis" by Zou, Hastie, Tibshirani
		spca.components_ = components
		#nuz = spca.transform(cdata).T
		nuz = ridge_regression(spca.components_.T, cdata.T, 0.01, solver='dense_cholesky').T
		
		#nuz = dot(components, cdata.T)
		q,r = qr(nuz.T)
		cumulative_var = []
		for i in range(1,num_components+1):
			cumulative_var.append(trace(r[0:i,]*r[0:i,]))
		explained_var = [math.sqrt(cumulative_var[0])]
		for i in range(1,num_components):
			explained_var.append(math.sqrt(cumulative_var[i])-math.sqrt(cumulative_var[i-1]))
		
		order = numpy.argsort(explained_var)[::-1]
		components = numpy.take(components,order,axis=0)
		evars = numpy.take(explained_var,order).tolist()
		#evars = numpy.take(explained_var,order)
		#order2 = [0,1,2,4,5,7,12,19]
		#components = numpy.take(components,order2,axis=0)
		#evars = numpy.take(evars,order2).tolist()
		
		return components, evars
Example #3
0
def test_fit_transform_variance():
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
                          random_state=0, variance=True)
    pca = PCA(n_components=3, random_state=0)

    pca.fit(Y)
    # no need to fit spca for this
    spca_lars.fit(Y)

    components = pca.components_
    explained_variance = pca.explained_variance_
    spca_lars.components_ = components
    explained_variance_sparse = spca_lars.explained_variance_

    assert_array_almost_equal(explained_variance, explained_variance_sparse)